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1 Overview of tilings of the Aztec diamond
2 Defining the coupled tilings (based on work with Sylvie Corteel and Andrew Gitlin:

arXiv:2202.06020)

3 Simulations
4 A shuffling algorithm (based on work with Matthew Nicoletti: arXiv:2303.09089)
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Domino tilings of the Aztec diamond

Domino tilings of the Aztec diamond were first introduced by
Elkies, Kuperberg, Larsen, and Propp in 1992.

The Aztec diamond of rank m = 3 and one possible domino tiling.
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Domino tilings of the Aztec diamond

There are many ways to view these tilings:

As a dimer model

As an example of a Schur process.

As an integrable vertex model.

For the moment we’ll focus on the the last two points.
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Domino tilings and sequences of partitions

Assign ‘particles’ and ‘holes’ to our dominos according to the rules

, , , .
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Domino tilings and sequences of partitions

λ = ∅ λ = (4, 3, 2, 2, 1)
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∅ = µ(1) � λ(1) �′ µ(2) � . . . � λ(N−1) �′ µ(N) � λ(N) �′ µ(N+1) = ∅
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Weights

0

1

2

. . .
2N − 2

2N − 1
2N

Assign weights to the dominos according
to:

A domino whose left square is
on slice 2i − 1 gets a weight of xi .

A domino whose right square
is on slice 2i − 1 gets a weight of
yi .

All other dominos get weight of 1.
Then the weight of a tiling

∅ � λ(1) �′ µ(2) � . . . � λ(N−1) �′ µ(N) � λ(N) �′ ∅

can be written as

sλ(1)(x1)s(λ(1)/µ(2))′(y1)sλ(2)/µ(2)(x2) . . . sλ(N)/µ(N)(xN)s(λ(N))′(yN)
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Enumeration

Repeated applications of the Cauchy identity∑
λ

sλ/ν(X )sλ′/µ′(Y )

=

∏
i ,j

(1 + xiyj)

∑
λ

sν′/λ′(Y )sµ/λ(X ) .

and branching rule∑
µ

sλ/µ(X )sµ(Y ) = sλ(X ,Y )

can be used to show

ZAD(X ,Y ) =
∏
i≤j

(1 + xiyj)
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Domino tilings as an integrable vertex model

Equivalently, one can view the tilings in terms of integrable vertex
models: µ � λ λ �′ µ

1 x x 1 1 x x 1 x 1

µ = (1, 0, 0)

λ = (3, 1, 0)
x

x

µ = (2, 0, 0)

λ = (2, 1, 1)

x

x

There is a weight-preserving bijection between tiling (as a sequence
of partitions) and vertex model

µ1
λ1

µ2

. . .
µN

λN
µN+1

0

↔

x1

y1

...

...

xN

yN

←− N −→
x

x

x

x

x

x

x
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Domino tilings as an integrable vertex model

There is a weight-preserving bijection between tiling (as a sequence
of partitions) and vertex model

↔

x

x

x

x

x

x

x

x2
1x2x3y

2
2 y

3
3 ↔ (y3

1 y
2
2 y

1
3 )︸ ︷︷ ︸

ind. of configuration

x2
1x2x3y

2
2 y

3
3

11 / 56



Review of the Aztec diamond
Coupled tilings of the Aztec diamond

Simulations
Shuffling algorithm

Domino tilings as an integrable vertex model

These vertex models satisfy the Yang-Baxter equation:

yx
1+yx

1
1+yx

yx
1+yx

1
1+yx 1

∑
interior paths

w


x

yJ1

I1

K1

I3

J3

K3

 =
∑

interior paths

w


y

xJ1

I1

K1

J3

I3

K3


for any fixed choice of boundary condition I1, J1,K1, I3, J3,K3.
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Domino tilings as an integrable vertex model

We can repeatedly apply the YBE to swap rows of the vertex
model:

w


µ

λ

y

x


= w


µ

λ

y

x


Then removing the yellow faces (but keeping the weight) gives

w

( )
=

1

1 + xy
, w

( )
= 1

w


µ

λ

y

x


= (1 + xy)w


µ

λ

y

x
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Domino tilings as an integrable vertex model

x1

y1

...

...

xN

yN

←− N −→

= many row swaps =

∏
i≤j

(1 + xiyj)


y1

yN

...

...

x1

xN

←− N −→︸ ︷︷ ︸
only config.

weight: yN
1 yN−1

2 ...yN

=⇒ ZAD(X ,Y ) =
∏
i≤j

(1 + xiyj)
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Part 2: Coupled tilings of the Aztec diamond
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Coupled tilings

Now rather than a single tiling we will consider a pair of tilings:

T1 T2

We’ll refer to the tilings as being different colors. We order the
colors blue < red.
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Weights of the coupled tiling

Assign weights to the dominos according to the rules

A domino of the form whose left square is on slice 2i − 1
gets a weight of xi .

A domino of the form whose right square is on slice
2i − 1 gets a weight of yi .

All other dominos get a weight of 1.

for each color.
Each ‘interaction’ gives a power of t, t ≥ 0, where we define
‘interaction’ by

, , , or

17 / 56



Review of the Aztec diamond
Coupled tilings of the Aztec diamond

Simulations
Shuffling algorithm

Weights of the coupled tiling

In our example,(
, , , or .

)

T1 T2

which has weight x2
1x2y

2
2 x3y

2
3 x

3
1y1y2y3︸ ︷︷ ︸

from hor. dominos

t4︸︷︷︸
interactions

.
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Where do the weights come from?

If we superimpose the two copies of our five-vertex models, we get
a new colored vertex model

1 xtδa xtδa 1 1 x x tγa x tγa

δa = # colors larger than a present γa = # colors larger than a of the form

µ = ((1, 0, 0), (2, 1, 0))

λ = ((3, 1, 0), (2, 2, 0))
x

x

µ = ((2, 0, 0, 0), (1, 0, 0, 0)

λ = ((2, 1, 1), (2, 1, 0))

x

x

x4t2 x10t

These vertex models are a degeneration of a vertex model studied
by Aggarwal, Borodin, and Wheeler (2021) related to the quantum
group Uq(ŝl(1|k)).
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Enumeration

The colored vertex model is still Yang-Baxter integrable (inherited from

the vertex model of Aggarwal-Borodin-Wheeler, see also Corteel-Gitlin-K.-Meza 2020)

yxtεa

1+yxtεa
1

1+yxtεa
yxtεa

1+yxtεa
1

1+yxtεa 1

εa = # colors larger than a present

Using the integrability exactly as before, we have

Theorem (Corteel-Gitlin-K. 2022)

The partition function for the coupled tilings of the Aztec diamond
is given by

Z
(2)
AD(X ,Y ; t) =

∏
i≤j

(1 + xiyj)(1 + xiyj t)
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Where do the weights come from?

In terms of partitions we now have a bijection between tilings and
sequences of 2-tuples of interlacing partitions.

∅ � λ(1)︸︷︷︸
=(λ(1),λ(1))

�′ µ(2) � . . . � λ(N−1) �′ µ(N) � λ(N) �′ ∅

The weight of the tiling can be written as

t#Lλ(1)(x1; t)L̃λ(1)/µ(2)(y1; t)Lλ(2)/µ(2)(x2; t)L̃λ(2)/µ(3)(y2; t) . . .Lλ(N)/µ(N)(xN ; t)L̃λ(N)(yN ; t)

The L are called LLT polynomials and are a generalization of the
Schur polynomials.
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Remarks

Everything here makes sense for more than 2 colors.
Interactions are then counted between every pair of colors.

k colors: Z
(k)
AD (X ,Y ; t) =

k−1∏
`=0

∏
i≤j

(1 + xiyj t
`)

Similar constructions can be done for other examples of types
of tilings. For example, reverse plane partitions.

Z
(k)
RPP,λ(q; t) =

k−1∏
`=0

∏
u∈λ

1

1− qh(u)t`
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Part 3: Simulations
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Simulations

Simulation of a 2-tiling of the rank-64 Aztec diamond at t = 1.
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Simulations

Simulation of a 2-tiling of the rank-256 Aztec diamond at t = 1.
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Simulations

Simulation of a 2-tiling of the rank-256 Aztec diamond at t = 0.2.
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Simulations

Close-up of southern corner of blue in a 2-tiling of the rank-512
Aztec diamond at t = 0.2.
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Simulations

Simulation of a 2-tiling of the rank-256 Aztec diamond at t = 5.
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Simulations

Simulation of a 2-tiling of the rank-256 Aztec diamond at t very
large.
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Simulations

Simulation of a 2-tiling of the rank-256 Aztec diamond at t = 0.
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Simulations

Fluctuations of the outer-most paths (Courtesy of L. Allen, B. Bertz, H. Kenchareddy

through the Madison Experimental Mathematics Lab)

× = large, • = small
t = 1 t = 0.5

t = 0.2 t = 0
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Remarks

For t = 0, 1,∞ we can prove some things:

Bijection from t = 0 2-tilings of rank N to normal tilings of
rank N.

Z
(2)
AD(X ,Y ; t) =

∏
i≤j

(1 + xiyj)(1 + xiyj t)|t=0

=
∏
i≤j

(1 + xiyj) = ZAD(X ,Y )

Can use this to find the arctic curve at t = 0, for example.

Symmetry between t and 1/t. (Reflecting over line y = x .)

For generic t, we know very little.
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Part 4: Shuffling algorithm
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Back to the dimer model
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Spider moves

Local move on our graph:

a

b

c

d →
a′

b′

c ′

d ′

where the weights update as

a′ =
c

ac + bd
, b′ =

d

ac + bd
, c ′ =

a

ac + bd
, d ′ =

b

ac + bd
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Spider move

Under a spider move the partition function remains unchanged, up
to an overall factor,

Z = (ac + bd)︸ ︷︷ ︸
∆

Z ′

For example:

w




︸ ︷︷ ︸

1

= ∆×


w




+ w






︸ ︷︷ ︸

(ac+bd)×(a′c ′+b′d ′)=(ac+bd)× ac+bd
(ac+bd)2 =1

“Creation”
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Spider move

Total of six local boundary conditions:

w



 = ∆× w




“Right” w



 = ∆× w




“Left”

w


 = ∆× w




“Up” w


 = ∆× w




“Down”

w


+ w


 = ∆× w




“Destruction” w



 = ∆×


w




+ w






“Creation”
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Shuffling

For the Aztec diamond, repeated applications of the spider move
allow one to generate large tilings: Embed → spider → contract

, Z2 =

( ∏
cells x

∆(x)

)
Z3
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Spider moves for double dimers

We can generalize the spider move to our interacting double
dimers.
Define interactions to be local configurations of the form

a

b

c

d :

a′

b′

c ′

d ′ :

These interactions agree with those of the coupled Aztec diamonds.
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Spider moves for double dimers

Now there are 6× 6 = 36 possible local boundary conditions which
we label by how the dimers ‘slide’:

(αβ) ∈ {c, d , ↑, ↓,→,←}2

Zc↑ corresponds to... Z ′←d corresponds to...
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Spider moves for double dimers

Two important subsets of local boundary conditions:
Define C as the set of boundary conditions (αβ) for a cell such
that

α = c and β ∈ {c ,←, ↓} or

α ∈ {c ,←, ↓} and β = c

and define D as the set of boundary conditions (αβ) such that

α = d and β ∈ {d ,←, ↓} or

α ∈ {d ,←, ↓} and β = d .
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Spider moves for double dimers

Perform the spider move for both colors. We have

Zαβ =∆2ΓZ ′αβ, (αβ) ∈ C

Zαβ =∆2Γ−1Z ′αβ (αβ) ∈ D

Zαβ =∆2Z ′αβ o.w.

where ∆ = ac + bd and Γ = ac+bd
act+bd .

Note in this case the prefactor depends on the the local
configuration.

Can’t immediately say that Z
(2)
N+1 ∝ Z

(2)
N .
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Generalized shuffling

Zαβ =∆2ΓZ ′αβ, (αβ) ∈ C

Zαβ =∆2Γ−1Z ′αβ (αβ) ∈ D

Zαβ =∆2Z ′αβ o.w.

Lemma (K.-Nicoletti 2023)

For any double dimer configuration on
the Aztec diamond of rank N, along
each SW-NE diagonal of cells the
difference between the number of cells
with local boundary condition of type
(αβ) ∈ C and those of type (αβ) ∈ D
is equal to 1.
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Generalized Shuffling

This implies that if the weights are chosen so that Γ is constant
along each SW-NE diagonal then

Z
(2)
N =

( ∏
cells x

∆(x)2

) ∏
diagonals d

Γ(d)

Z
(2)
N+1
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Generalized shuffling

Constraint: “ if the weights are chosen so that Γ is constant along
each SW-NE diagonal”
This is very restrictive.

Since the weights update after each iteration of the shuffling,
weights for which the constraint is satisfied for one iteration
may not satisfy the constraint for the next iteration.

Works for uniform weights (Γ = ac+bd
act+bd = 2

1+t everywhere)
since they update to uniform weights.

Works for “LLT process” weights.

Doesn’t seem to work for 2-periodic weights, for example.

45 / 56



Review of the Aztec diamond
Coupled tilings of the Aztec diamond

Simulations
Shuffling algorithm

k-tiling shuffling: Step 1

This generalized domino shuffling can be viewed purely in terms of
movement of the dominos...
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k-tiling shuffling: Step 1

There are 4 rank-1 2-tilings:

1 1

t t

Pick a 2-tiling as follows:
1 With probability t

1+t choose the blue tiling to be horizontal,

with probability 1
1+t choose vertical.

2 Choose the red tiling to be vertical or horizontal each with
probability 1

2 .
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k-tiling shuffling: Step 2

Now suppose we’ve run the algorithm until we have 2-tiling of
rank-k .

Embed it in an AD of rank-(k + 1).
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k-tiling shuffling: Step 2
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k-tiling shuffling: Step 3

- Slide the dominos one space according to the rules:

→ , ↓ , ← , ↑

- If two dominos collide, destroy them.

→←
↑
↓

Destruction
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k-tiling shuffling: Step 3 cont.

(We swap the checkerboard coloring after to keep with our original
convention.)
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k-tiling shuffling: Step 4

- We are left with a partial tiling of rank-(k + 1).

- The empty space in each tiling can be partitioned uniquely
into 2× 2 squares that all have black square at the top-left.

52 / 56



Review of the Aztec diamond
Coupled tilings of the Aztec diamond

Simulations
Shuffling algorithm

k-tiling shuffling: Step 4 cont.

Fill in the squares according to the rules:
1 First fill in the blue tiling. For each square choose two

horizontal dominos with probability t#1

1+t#1
where

#1 =


1 if red is or or a creation

0 o.w.

2 Now fill in the red. For each square choose two horizontal
dominos with probability t#2

1+t#2
where

#2 =


1 if blue is or

0 o.w.
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k-tiling shuffling: Step 4 cont.

1
2

1
1+t

1
1+t

t
1+t

t
1+t

1
2

1
2
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k-tiling shuffling: Step 5

- Repeat steps 2-4 until you get a tiling of rank-N.

Theorem (K.-Nicoletti 2023)

The probability of getting a 2-tiling TN is

P(TN) =
w(TN)

Z
(2)
AD(1, 1; t)
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Thank You!
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