
NOTES ON PLANE PARTITIONS

1. Basics of partitions

Let n be a positive integer. An integer partition of n (often just called a partition
of n) is a way to write n as a sum of non-negative integers. For example, one partition
of n = 3 is 3 = 2+1. We do not distinguish between different rearrangements of the
summands, that is, we treat 2 + 1 and 1 + 2 as the same partition. If λ is a partition
of n, we usually write it as a tuple of the summands put in decreasing order:

λ = (λ1, λ2, . . . , λk)

with λ1 ≥ λ2 ≥ . . . ≥ λk > 0 and λ1 + . . .+ λk = n. Each summand is called a part
of the partition. For example, λ1 is the first part and λi is the ith part. The total
number of parts of a partition is called its length and is written `(λ).

Example 1.1. Let n = 3. There are 3 different partitions of n = 3. We have

(3), (2, 1), and (1, 1, 1).

We have `((3)) = 1, `((2, 1)) = 2, and `((1, 1, 1)) = 3.

Remark 1.2. It will sometimes be convenient to add extra parts equal to zero to the
end of our partitions, sometimes infinitely many of them. You may see partitions
given as

λ = (λ1, λ2, λ3, . . .)

with λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ 0. In this case, the length of a partition is the number
of nonzero parts.

Exercise 1. List all partitions of 5 as well as their lengths. (Difficulty rating: 1)

Let p(n) be the number of partitions of n. For n = 0, 1, 2, 3, 4, 5 we have

p(n) = 1, 1, 2, 3, 5, 7

respectively. (By convention we have p(0) = 1 as only the empty sum sums to zero.)
The generating function of p is the infinite series

∞∑
n=0

p(n)qn = 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + . . .

There is no known closed formula for the sum, but it can be expresses as an infinite
product.

Theorem 1.3. We have
∞∑
n=0

p(n)qn =
∞∏
j=1

1

1− qj

where this is an equality of power series (one should think of each term in the product
on the RHS as a geometric series 1

1−r = 1 + r + r2 + . . .).
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We will often depict partitions pictorially in the form of Young diagrams. These
are collections of boxes such that the number of boxes in the ith row is equal to the
ith part of the partition. It is easiest to see in an example.

Example 1.4. For the partitions of 3, the Young diagrams are

λ = (3) λ = (2, 1) λ = (1, 1, 1)

Note that we are drawing the largest part as the top row. This is the English
convention. The French convention has the largest part on bottom and the smallest
on top.

Exercise 2. Draw the Young diagram for each partition you found in Exercise 1.
(Difficulty rating: 1)

It will be useful for us in what follows to have another perspective through which
we can view partitions. Consider the Young diagram of a partition λ drawn in Rus-
sian convention (French convention rotated 45◦ counter-clockwise). For example, if
λ = (4, 3, 2, 2, 1) we draw

The boundary of the partition then becomes an path with steps of the form (1, 1)
and (1,−1). Assign to each (1,−1) step a particle (or filled dot) and to each (1, 1)
step a hole (or unfilled dot). Project this sequence of particles and holes to the
horizontal axis, and extend it infinitely to the left with particles and infinitely to
the right with holes. This sequence of particles and holes is known as the Maya
diagram of the partition. In our example, we have

◦ • ◦ •
• ◦ • ◦ • ◦

◦•
•

◦ • ◦ • ◦ ◦ . . .••◦•◦••. . .

Note there is a unique point where the number of particles to the right of that point
is equal to the number of holes to the left. We call this center of the Maya diagram
and draw it in red in the above. We will think of the center being at 0 and the
particles as being on the half-integers. In the example above the particle position,
starting with the right-most, are given by

(3.5, 1.5, −0.5, −1.5, −3.5, −5.5, −6.5, . . .)

In fact, if λ = (λ1, λ2, . . .), including infinitely many zero parts, then the particles
are at positions λi − i+ 1

2
for i = 1, 2, . . ..
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While we consider Maya diagrams as bi-infinite sequences of particles and holes,
notice that for any given partition λ there is only a finite interval in which anything
“interesting” happens. If λ1 is the length of the first row of λ and λ′1 the length of
the first column, then the right-most particle is at λ1 − 1

2
and the left-most hole is

at −λ′1 + 1
2
.

Exercise 3. Draw the Maya diagram for each partition you found in Exercise 1.
(Difficulty rating: 1)

The conjugate partition of a partition λ is the partition you get by reflecting the
Young diagram of λ over its main diagonal. We denote it λ′.

Example 1.5. Consider the partition λ = (4, 3, 2, 2, 1). Its Young diagram is given
by

Reflecting this around the main diagonal gives

We see that λ′ = (5, 4, 2, 1).

We will often identify a partition λ with its Young diagram and write x ∈ λ to
mean a specific square (or cell) x in the Young diagram. For a cell x ∈ λ we define
the arm of x to be the cells to the right of x in the same row and we denote the
number of such cells armλ(x). Similarly, we define the leg of x to be the cells below
x in the same column and denote the number of such cells legλ(x). The hook of the
cell x is all the cells in its arm and its leg as well as the cell itself. The number
of cells in the hook of x is called the hook length and is denoted hλ(x). Note that
hλ(x) = armλ(x) + legλ(x) + 1.

Example 1.6. Consider the cell x, marked in green, in the partition λ = (5, 4, 2, 1).
We color the cells in its arm red and those in its leg blue.

We have armλ(x) = 3, legλ(x) = 2 and hλ(x) = 6.
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If we have two partitions µ and λ we say that µ is contained in λ and write µ ⊆ λ
if the Young diagram for µ is contained in the Young diagram for λ. When µ ⊆ λ
we define the skew diagram λ/µ to be the set of cells in the Young diagram for λ
that are not in the Young diagram for µ. λ/µ is called a skew partition. Skew things
are not so important for these notes, but much of what we do in what follows can
be extended to the skew case.

Example 1.7. Consider the partitions µ = (2, 2, 1) and λ = (4, 3, 2, 2, 1). We draw
the two Young diagram below with the gray squares indicating the diagram for µ.

The skew diagram for the skew partition λ/µ = (4, 3, 2, 2, 1)/(2, 2, 1) is given by

2. Interlacing partitions

We say that two partitions µ and λ interlace if

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ . . .

and write µ � λ. Equivalently, µ � λ if and only if one can get the Young diagram
of λ from the Young diagram of µ by adding at most one cell to each column. We
say that the two partitions differ by a horizontal strip. Note that for µ and λ to
interlace we necessarily have µ ⊆ λ.

We say that µ and λ co-interlace if their conjugate partitions interlace, that is,
µ′ � λ′. We write µ �′ λ. Note one can get the Young diagram of λ from the Young
diagram of µ by adding at most one cell to each row. We say that the two partitions
differ by a vertical strip.

Example 2.1. The partitions µ = (3, 3, 1, 1) and λ = (4, 3, 2, 2, 1) satisfy µ �′ λ
since we can get λ from µ by adding at most one cell to each row. Below we draw
the Young diagram of µ in gray and the vertical strip you need to add to get λ in
white.
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Note that these partitions do not satisfy µ � λ since we need to add two cells to
the second column of µ to get λ.

Many different objects in combinatorics can be shown to be in bijection with
sequences of (co-)interlacing partitions. The study of the probabilistic aspects of
such sequences of partitions is known as the study of Schur processes. We’ll mostly
stick to the combinatorics and look at only a few examples.

2.1. Semi-standard Young tableaux. A semi-standard Young tableaux of shape
λ is a filling of the cells of the Young diagram of λ by entries in {1, 2, . . . , n} such
that:

• The entries are weakly increasing across the rows.

• The entries are strictly increasing down the columns.

Proposition 2.2. There is a bijection between semi-standard Young tableaux of
shape λ with entries in {1, 2, . . . , n} and sequence of partitions

∅ = λ(0) � λ(1) � . . . � λ(n−1) � λ(n) = λ

The idea of the proof is that λ(i) is the partition you get by looking at all the
cells with filling ≤ i. It is best seen via an example.

Example 2.3. An example of a SSYT of shape λ = (4, 3, 1) filled with entries in
{1, 2, 3, 4}.

1 1 2 4

2 2 3

4

1 1 2

2 2 3

4

4

λ(1) = (2) λ(2) = (3, 2) λ(3) = (3, 3) λ(4) = (4, 3, 1)

We also list the corresponding sequence of interlacing partitions.

We can write down a generating function for these tableaux. Assign to each
tableaux T a monomial in the variables x1, x2, . . ., xn given by

xT = x# of 1’s
1 x# of 2’s

2 . . . x# of n’s
n

We can then write down a polynomial

sλ(x1, . . . , xn) =
∑

T∈SSY T (λ)

xT

where the sum is over all semi-standard Young tableaux of shape λ with entries in
{1, 2, . . . , n}. This is known as a Schur polynomial. These polynomials are ubiqui-
tous in combinatorics and also make appearances representation theory, probability,
and mathematical physics.

Exercise 4. List all SSYT with shape λ = (3, 2, 1) with entries in {1, 2, 3}. (Diffi-
culty rating: 1)

Exercise 5. Prove Proposition 2.2. (Difficulty rating: 2)
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2.2. Tilings of the Aztec diamond. Let AN+1 be the union of faces of Z2 which
are entirely contained in the region |x|+ |y| ≤ N + 1. A tiling of the Aztec diamond
of rank N is a tiling of the region AN+1 with 2 × 1 or 1 × 2 dominos. The four
possible dominos and an example of a tiling of the Aztec diamond of rank 3 are
shown below:

Proposition 2.4. There is a bijection between tilings of the Aztec diamond of rank
N and sequences of interlacing partitions

∅ = µ(1) � λ(1) �′ µ(2) � . . . � λ(N−1) �′ µ(N) � λ(N) �′ µ(N+1) = ∅.

To prove this we turn to the Maya diagrams. Given a tiling of the Aztec diamond
of rank N assign particles and holes to the dominos according to the rules

, , , .

Along each diagonal slice of the Aztec diamond view the resulting sequence of par-
ticles and holes as the Maya diagram of some partition by extending it infinitely
to the South-West with particles and infinitely to the North-East by holes. Let us
index the slices starting from 0, such that µ(i) is the partition along slice 2i− 2 and
λ(i) is the partition along slice 2i − 1. Note that µ(1) = µ(N+1) = ∅ is forced. We
give an example below. The center of the Maya diagrams is marked in red.

0
1

2

. . .
2N − 2

2N − 1
2N

µ1
λ1

µ2

. . .
µN

λN
µN+1

0

The example tiling on the left above corresponds to the sequence of partitions

µ(1) = ∅, λ(1) = (1)

µ(2) = ∅, λ(2) = (1, 0)

µ(3) = (1, 0), λ(3) = (1, 0, 0)

µ(4) = ∅

Exercise 6. List all 8 tilings of the Aztec diamond of rank 2 and the corresponding
sequence of partitions. (Difficulty rating: 1)
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Exercise 7. Construct the tiling that corresponds to the sequence of partitions:

µ(1) = ∅, λ(1) = (2)

µ(2) = (2), λ(1) = (2, 1)

µ(3) = (1, 0), λ(3) = (1, 1, 0)

µ(4) = ∅

(Difficulty rating: 1)

Exercise 8. Prove Proposition 2.4. (Difficulty rating: 3)

Exercise 9. Note that for tilings of the Aztec diamond we alternate between � and
�′. What sort of tilings do we get if you we use a different sequence of interlacing
conditions? That is, we choose some element I ∈ {�,�′}2n, look at sequences of
interlacing partitions

∅ = λ(1) I1 λ
(2) I2 . . . λ

(2n)I2nλ
(2n+1) = ∅,

and determine what sort of domino tilings this is in bijection with. The resulting
tilings are known as steep tilings. (Difficulty rating: 3)

3. Plane Partitions

Plane partitions are the two-dimensional analogue of integer partitions. We can
define plane partitions as arrays of non-negative integers that are weakly decreasing
along the rows and also weakly decreasing down the columns. Note that we allow
filling by zero. Sometimes we will restrict the number of rows or columns the plane
partition is allowed to have, but otherwise we consider bi-infinite arrays. The volume
of a plane partition is the sum of all the entries in the plane partition.

Example 3.1. A possible plane partition restricted to 3 rows and 4 columns:

6 6 3 3

4 3 3 0

2 2 0 0

It has volume 32.

The following theorem gives the generating function of the plane partitions.

Theorem 3.2. Let pp(n) be the number of plane partitions with volume n. The
generating function for the number of plane partitions is∑

Λ, P.P.

q|Λ| =
∞∑
n=0

pp(n)qn =
∞∏
n=1

1

(1− qn)n

for |q| < 1.

Exercise 10. By expanding the RHS of the generating function in Thm. 3.2 as a
power series in q, determine the number of plane partitions of volume 3. List them.
(Difficulty rating: 1)
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If we fix the number of rows to be k and the length of each row to be r, then the
number of such plane partitions also has a nice product formula.

Proposition 3.3. Fix the number of rows to be k and the length of each row to be
r. The number of such plane partitions is given by

∑
Λ, P.P. with k rows and r cols

q|Λ| =
r∏
i=1

k∏
j=1

1

1− qi+j−1

Exercise 11. Prove Thm. 1.3 starting from Prop. 3.3. (Difficulty rating: 2)

3.1. Reverse Plane partitions. A reverse plane partition is what you get when
you rotate the plane partition by 180 degrees. Equivalently, you think of filling the
rows and columns with weakly increasing non-negative integers. For example:

6 6 3 3

4 3 3 0

2 2 0 0

7→ 0 0 2 2

0 3 3 4

3 3 6 6

We can fix the length of each row by giving the reverse plane partition a shape: a re-
verse plane partition of shape λ is a filling of the Young diagram of λ by non-negative
integers that are weakly increasing along the rows and columns. For example, let
λ = (4, 3, 1), then one possible reverse plane partition of shape λ is

0 0 2 3

1 2 4

1

One way to visualize reverse plane partitions is as stacks of cubes where the filling
tells you the height of the column of cubes.

Example 3.4. Consider the RPP of shape λ = (4, 4, 4) drawn in Russian convention
below

0
0

2
2

0
3

3
4

3
3

6
6
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We can draw it as a stack of cubes

0
0

2
2

0

3
3

4

3
3

6
6

Similarly, the RPP of shape λ = (4, 3, 1) given above takes the form

4 3
1 2 2

1 0
0

in Russian convention. The corresponding stack of cubes is

0
0

2

3

1

2

4

1

Remark 3.5. Rather that stacks of cubes, one may instead view the RPP as a tiling
of the upper third of the plane by rhombuses (also known as a lozenge tiling). For
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example, the same RPP of shape (4, 3, 1) could be drawn as the tiling

where the pattern continues infinitely to right, left, and upward.

Clearly, the generating function for reverse plane partitions of shape

λ = (r, . . . , r︸ ︷︷ ︸
k times

)

is given by the formula in Prop. 3.3. But we can do better.

Theorem 3.6. Let RPP (λ) be the set of all reverse plane partitions of shape λ.
We have ∑

Λ∈RPP (λ)

q|Λ| =
∏
x∈λ

1

1− qhλ(x)

where the product is over all cells of the Young diagram of λ and hλ(x) is the hook
length of the cell x in λ.

Example 3.7. Let λ = (4, 3, 1). The hook length of the cells of λ are given below:

6 4 3 1

4 2 1

1

Theorem 3.6 says∑
Λ∈RPP (λ)

q|Λ| =
1

(1− q6)(1− q4)2(1− q3)(1− q2)(1− q)3
= 1 + 3q + 7q2 + . . . .

Expanding this in power series, we see there is 1 reverse plane partitions of the given
shape with volume 0, there are 3 with volume 1, there are 7 with volume 2 etc. We
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list the seven with volume 2 below:

0 0 0 2

0 0 0

0

0 0 0 0

0 0 2

0

0 0 0 0

0 0 0

2

0 0 0 1

0 0 1

0

0 0 0 0

0 1 1

0

0 0 0 1

0 0 0

1

0 0 0 0

0 0 1

1

Finally, we get to the bijection between reverse plane partitions of a fixed shape
λ and certain sequences of partitions. This will be easiest to see in terms of an
example.

Example 3.8. Consider the following reverse plane partition of shape λ = (4, 3, 1):

0 1 3 4

1 1 4

3

We now draw it in Russian convention

4 4
3 1 3

1 1
0

◦ • ◦ ◦ • ◦ •

with the Maya diagram drawn below (only including from the left-most hole to the
right-most particle). Set λ(0) = λ(7) = ∅. By reading the vertical slices from left to
right we get a sequence of partitions λ(1), . . ., λ(6) given by

λ(1) = (3), λ(2) = (1), λ(3) = (1, 0),

λ(4) = (4, 1), λ(5) = (3), λ(6) = (4).

where the partitions are determined by the filling on each vertical slice. These satisfy
the interlacing conditions

∅ = λ(0) � λ(1) � λ(2) � λ(3) � λ(4) � λ(5) � λ(6) � λ(7) = ∅

The interlacing conditions are determined by the shape λ. We see that we have a
� whenever the Maya diagram of λ has a hole and we have � whenever the Maya
diagram has a particle. That is, the sequence

◦ • ◦ ◦ • ◦ •

corresponds to the sequence of interlacing conditions

�, �, �, �, �, �, � .

We state the following theorem that generalizes the above example.

Theorem 3.9. Let λ be a partition and set n = hλ((1, 1)). There is a bijection be-
tween reverse plane partitions of shape λ and sequences of partitions λ(0), λ(1), . . . , λ(n+1)

such that:

• λ(0) = λ(n+1) = ∅
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• Suppose I = (I0, . . . , In) ∈ {�,�}n is chosen such that Ik =� if there is a
hole at −λ′1 + 2k+1

2
in the Maya diagram of λ and Ik =� otherwise. Then

the sequence of partitions satisfy the interlacing condition

∅ = λ(0) I0 λ
(1) I1 λ

(2) I3 . . . In λ
(n+1) = ∅.

Exercise 12. Draw the reverse plane partition given in Example 3.8 as a rhombus
tiling by viewing it in Russian convention and thinking of the filling in each cell as
giving the height of a stack of cubes on that cell. (Difficulty rating: 1)

Exercise 13. Use Theorem 3.6 to give a formula for the generating function for
reverse plane partitions of shape (n, n− 1, . . . , 2, 1). (Difficulty rating: 1)

Exercise 14. Prove Theorem 3.2 starting from Proposition 3.3 by taking the limit
as k, r →∞. (Difficulty rating: 2)

Exercise 15. Prove Proposition 3.3 starting from Theorem 3.6. (Difficulty rating:
2)

Exercise 16. Prove Theorem 3.9. (Difficulty rating: 2)

Note that if you have done all the exercises up to this point, then all that is left
to prove is Thm. 3.6. We will do this in the Section 5 using vertex models.

4. Five-vertex models

In this section we introduce vertex models. Vertex models encompass a large
class of models originally arising in statistical physics, but now known to have deep
connection to representation theory and, as we shall see, combinatorics. In broad
strokes, consider the vertices (i, j) ∈ Z2. Suppose we have certain plaquettes we can
place over each vertex and that there are restrictions on which plaquettes are allowed
at neighboring vertices. Furthermore, we assign weights to the different plaquettes.
The type of plaquettes along with the local restrictions and weights define the vertex
model. While the above description is rather vague, it is in part because there are
such a wide variety of vertex models that is hard to give a precise definition of what
the term means. We would like to stress that the idea that we building blocks of our
vertex model only “interact” locally in both the constraints and the weights. For
our purposes it will be enough to focus on two types of five-vertex models, where
“five” indicates the number of basic plaquettes.

4.1. The first five-vertex model. Now we describe the first five vertex model
that will be of interest to us. The basic plaquettes are drawn below along with their
corresponding weight:

1 x x 1 1

We think of each vertex as either being empty or having a path enter from the
bottom or left and exit from the top or right. The local constraint on neighboring
vertices is that the path segments must match up. We assign a weight of x whenever
a path exits to the right. Note that it is not necessary for neighboring vertices to
have the same weight parameter and often we will choose them to be different.
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When considering a finite domain we have to impose boundary conditions, that is,
rules for whether or not paths are entering or exiting the boundary of our domain.
For example, we could have

x1 x1 x1 x1 x1

x2 x2 x2 x2 x2

x3 x3 x3 x3 x3

x4 x4 x4 x4 x4

where a white dot indicate no path crosses that portion of the boundary and a black
dot indicates that a path does cross that portion of the boundary. The labels xi
indicate the weight for the particular vertex; here we choose the weights so that
they are the same in each row of the domain.

Let v be a vertex and w(v) be the weight of the vertex. For a path configuration
C that satisfies the boundary conditions we define the weight of the configuration
w(C) to be the product of the weights of each vertex. In our example, a valid
configuration and its weight are

C :

x1

x2

x3

x4

, w(C) =
∏

vertices v

w(v) = x1x2x
2
4

where we add a label of xi on the left to indicate the weight parameter in each row.

The partition function is the sum of the weight of all the configurations obeying
the boundary conditions:

Z =
∑
C

w(C).

We stress that it will depend on the choice of boundary condition and that it is a
function of the weights. In our example, we have

Z = x2
1x2x3 + x2

1x2x4 + x2
1x3x4 + x1x

2
2x3 + x1x

2
2x4 + 3x1x2x3x4 + x1x2x

2
3 + x1x

2
3x4

+ x1x2x
2
4 + x1x3x

2
4 + x2

2x3x4 + x2x
2
3x4 + x2x3x

2
4

Note that if w(C) ≥ 0 for all configurations C then we can define a probability
distribution on the set of configurations by

P(C) =
w(C)
Z

.

This is known as the Gibbs measure of the model in statistical physics, although
here we won’t touch much on the probabilistic aspects of the vertex models.
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Let us relate this five vertex model back to our interlacing partitions. Suppose
we have a single bi-infinite row of our vertex model

. . . . . .x x x x x x

We need to give it boundary conditions and for that we return to Maya diagrams.
First choose a location in our row to be the center and let µ and λ be partitions. To
the bottom boundary assign boundary conditions corresponding to µ, that is, the
center of the Maya diagram aligns with the center of the row and there is a path
entering from the bottom if and only if there is a particle in the Maya diagram of
µ. To the top assign boundary condition corresponding to λ. For the left and right
boundaries (off at ±∞) we choose to have no paths entering or exiting. We draw
the row with these boundary conditions as

. . . . . .x x x x x x

λ

µ

where we use red dots to mark the center. We have the following Lemma.

Lemma 4.1. If µ � λ then there is a unique way to fill in the row with paths and it
has weight x|λ|−|µ|. Otherwise, there is no valid way to to fill in the row with paths
and the weight is zero.

Example 4.2. Let µ = (1, 1) and λ = (3, 1, 1). Then the row with bottom boundary
condition µ and to boundary condition λ (with no paths entering or exiting on the
sides) has a unique valid path configuration given by

. . . . . .

The weight of this configuration is x|λ|−|µ| = x3. The red dots marks the center of
the Maya diagrams which we also use to define the center of our row. Note that the
row extends infinitely to the left with path that are vertical, and infinitely to the
right with empty vertices.

If the fact that the row is infinitely long bothers you, recall that for the Maya
diagrams there is only a finite interval in which “interesting” things are happening.
For fixed λ and µ we can always choose to have a finite but large enough row which
captures all of this behavior. In the above example, it is enough to only keep the
six center columns.

Exercise 17. Draw some examples of rows with boundary conditions given by a
pair of partitions λ and µ, and compute the weight of the configurations. (Difficulty
rating: 1)

Exercise 18. Prove Lemma 4.1. (Difficulty rating: 2)
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4.2. Yang-Baxter Integrability. One of the main benefits of working with the
vertex model is it provides extra local structure. In particular, our vertex model is
Yang-Baxter integrable, a notion we will now describe.

Introduce a new set of vertices we’ll call crosses such that the allowed local
configurations are

z :

1− z z 1 z 1

where below we also write the corresponding weight.

These crosses and our original vertices satisfy the following relation

y
x

i1

i2

i3

j2

j1

j3

x

y
= y

x

i1

i2

i3

j1

j2

j3

y

x
(4.1)

for any choice of i1, i2,3 , j1, j2, j3 ∈ {0, 1}, where these indicate a choice of fixed
boundary condition both sides (with 0 indicating there is no path, and 1 indicating
there is a path), x and y are the weight parameters at each vertex, and we sum the
weights over all possible interior path configurations on both side. In other words, if
we fix the same boundary condition on both sides, then the partition functions are
equal. This is known as the Yang-Baxter equation. We’ll abbreviate it as the YBE.

Note that we move the cross from the left to the right of vertices and the vertices
swap: on the left side the bottom comes with the parameter x and the top comes
with parameter y, on the right side it is swapped.

Example 4.3. Suppose we set i1 = j2 = 1 and the rest to zero. Then the YBE says
we have the following equality of partition functions:

y
x

x

y
= y

x
y

x

Explicitly writing the sum over path configurations, this becomes

w


+ w


 = w




where we see there are two ways to fill in the paths on the left but only one on the
right. Computing the weights we have

LHS:
(

1− y

x

)
· y +

y

x
· y = y

RHS: x · y
x

= y
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which are in fact equal.

As there are only 26 = 64 choices of boundary conditions, there are only 64
equations needed to be checked to see that the YBE holds. In principle, this could
be checked by hand. Generally, however, the YBE follows from the representation
theoretic origins of our vertex model, in particular the fact that they are related to
so-called R matrices of quantum groups.

To see an example of what we can get from the YBE, let’s return to the case of
semi-standard Young tableaux. We begin with a proposition whose proof we leave
as an exercise.

Proposition 4.4. There is a bijection between semi-standard Young tableaux of
shape λ with maximum filling n and 5-vertex path configurations on the domain

λ

∅

. . . x1 x1 x1 x1 . . .

. . . x2 x2 x2 x2 . . .

. . . . . . . . . . . . . . . . . .

. . . xn xn xn xn . . .

Moreover, the partition function of the vertex model is exactly the Schur polynomial
sλ(x1, . . . , xn).

Example 4.5. Let λ = (2, 1, 1) and the let the maximum filling be n = 4. Then
one possible path configuration of the above domain is

x1

x2

x3

x4

where it extends to the left with vertical paths and to the right with empty space.
This corresponds to the semi-standard Young tableaux

1 4

2

4

We can read off the sequence of interlacing partition from the vertex model by
looking at the positions the paths exit the top of each row. In this example, we have

∅ � (1) � (1, 1) � (1, 1) � (2, 1, 1)
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We’ll now use the YBE to prove that Schur polynomials are symmetric, that is
for any permutation σ ∈ Sn we have

sλ(x1, x2, . . . , xn) = sλ(xσ(1), xσ(2), . . . , xσ(n)).

Since any permutation can be built from transpositions of the form (xi, xi+1) 7→
(xi+1, xi), it is enough to show

sλ(x1, . . . , xi, xi+1, . . . , xn) = sλ(x1, . . . , xi+1, xi, . . . , xn).

To that end let’s look at the i-th and (i+ 1)-st row of our vertex model. We can
insert a cross at the far left and get

λ(i+1)

λ(i−1)

. . . xi xi xi xi . . .

. . . xi+1 xi+1 xi+1 xi+1 . . .
=

λ(i+1)

λ(i−1)

xi+1

xi

. . . xi xi xi xi . . .

. . . xi+1 xi+1 xi+1 xi+1 . . .

as with these boundary conditions the cross can only be empty and contributes a
weight of 1. Now repeatedly using the YBE, we have

λ(i+1)

λ(i−1)

xi+1

xi

. . . xi xi xi xi . . .

. . . xi+1 xi+1 xi+1 xi+1 . . .
=

λ(i+1)

λ(i−1)

xi+1

xi

. . . xi+1 xi xi xi . . .

. . . xi xi+1 xi+1 xi+1 . . .

= . . . =

λ(i+1)

λ(i−1)

xi+1

xi

. . . xi+1 xi+1 xi+1 xi+1 . . .

. . . xi xi xi xi . . .

We are able to swap the rows! We can remove the cross at the right end as it again
must be empty and so it contributes a weight of 1. This process of pushing a cross
across a pair of rows in order to swap them is sometimes referred to as the “train
argument.”
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Altogether, we have shown we have the equality of partition functions

λ

∅

. . . x1 x1 x1 x1 . . .

. . . . . . . . . . . . . . . . . .

. . . xi xi xi xi . . .

. . . xi+1 xi+1 xi+1 xi+1 . . .

. . . . . . . . . . . . . . . . . .

. . . xn xn xn xn . . .

=

λ

∅

. . . x1 x1 x1 x1 . . .

. . . . . . . . . . . . . . . . . .

. . . xi+1 xi+1 xi+1 xi+1 . . .

. . . xi xi xi xi . . .

. . . . . . . . . . . . . . . . . .

. . . xn xn xn xn . . .

By Proposition 4.4, the partition function on the LHS is sλ(x1, . . . , xi, xi+1, . . . , xn)
and the one on the RHS is sλ(x1, . . . , xi+1, xi, . . . , xn). It follows that the Schur
polynomials are symmetric.

Exercise 19. Prove Proposition 4.4. (Difficulty rating: 2)

4.3. The second five-vertex model. We will need a second five vertex model. We
will draw the vertices in gray to distinguish them from the previous vertex model.
The five possible vertices and there weights are draw below:

x :

x 1 1 x x

Note that the possible path configurations are the same, it is only the weights that
have changed. In fact, if wx(v) is the weight of a vertex in the first vertex model,
the corresponding weight in this new vertex model is x · w1/x(v).

Since this vertex model differs from the previous vertex model only through a
change of variable in the weight, the YBE still holds. In particular, we have

yx

i1

i2

i3

j2

j1

j3

x

y
= yx

i1

i2

i3

j1

j2

j3

y

x

for any choice of boundary condition i1, i2, i3, j1, j2, j3 ∈ {0, 1}.

As you might expect, this vertex model can also be related to our interlacing
partitions. The following lemma describes this relationship.
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Lemma 4.6. Let λ and µ be partitions, and k an integer such that λi = µi = 0 for
all i ≥ k. Consider the semi-infinite row with boundary condition shown below:

x x x x x x x . . .

k

λ

µ

There is a unique valid path configuration for this row if and only if µ � λ. It has
weight xkx|µ|−|λ|. Otherwise, there is no valid path configurations and the weight is
zero.

Notice the differences here compared to the previous vertex model:

• The partition on the bottom boundary is now larger, i.e. µ ⊃ λ.

• We center the Maya diagram on top one column to the left of the one on the
bottom.

• On the right boundary our boundary condition has a path exiting.

• The row is no longer infinite to the left.

The last condition is necessary since in the gray vertex model vertical paths come
with a weight of x, so if the row extended infinitely to the left we would have in
infinite power in our weight.

Example 4.7. Let µ = (3, 1, 1), λ = (2, 1), and k = 4. Then the row with bot-
tom boundary condition µ and to boundary condition λ has a unique valid path
configuration given by

. . .

The weight of this configuration is xkx|µ|−|λ| = x4+2 = x6. Note that the x|µ|−|λ| = x2

comes form the empty vertices, while the xk = x4 comes from the number of path
exiting at the top.

Exercise 20. Prove Lemma 4.6. This is less straight forward than Lemma 4.1. The
comments at the end of Example 4.7 may be helpful. (Difficulty rating: 2)

5. Reverse plane partitions revisited

In this section we will use the extra structure provided by the vertex models in
order to prove Theorem 3.6. It will be easiest to see in terms of a specific example,
so let us return the Example 3.8 of a reverse plane partition of shape λ = (4, 3, 1).

4 4
3 1 3

1 1
0
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By Theorem 3.9 a reverse plane partition can be mapped to a sequence of interlacing
partitions. In this case, we have

∅ � (3) � (1) � (1, 0) � (4, 1) � (3) � (4) � ∅

Now, using Lemmas 4.1 and 4.6, we can map this to a path configuration using
our vertex model. Whenever we see a � we will have a row of white vertices,
while whenever we see a � we put a gray row. The specific partitions tells at what
positions the paths cross between the rows. In our example, we have

x1

x2

x3

x4

x5

x6

x7

Note the number of paths is the number of non-zero parts of λ. We could include
some number of zero parts in λ which would result in extending our domain to the
left with columns containing vertical paths. But this is unnecessary.

One can check that the above gives a bijection between reverse plane partitions
of shape λ and path configuration of a certain vertex model in which the type of
rows depend on λ. However, we have not mentioned what weights we should choose
for our vertices. We would like to pick them so that the total weight of the path
configuration is equal to q to the volume of the reverse plane partition.

Lemma 5.1. Let Λ be a reverse plane partition and `(λ) be the number of non-zero
parts of λ. Let C be the corresponding path configuration under the bijection described
above. Then if one chooses the parameters of the vertex model to be xi = q±i where
we take + for a gray row and − for a white row, we have

qvol(Λ) · Aλ(q) = w(C)

where Aλ(q) = q
∑`(λ)
i=1 (λi−i+`(λ))(i−1) is completely determined by the shape λ and is

independent of the specific configuration.

Proof. Suppose that the sequence of interlacing partitions corresponding to our re-
verse plane partition Λ are given by

∅ = λ(0), λ(1), λ(2), . . . , λ(n), λ(n+1) = ∅
where n = hλ((1, 1)). Note that we can write the volume of the reverse plane
partition as

vol(Λ) = |λ(1)|+ |λ(2)|+ . . .+ |λ(n)|
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Let’s look at rows i and i+ 1, i = 1, . . . , n of the vertex model. Note the bottom
boundary of this pair of rows is given by λ(i−1), the top boundary is given by λ(i+1),
and in between we have λ(i). Note that these are the only rows where the weight
will depend explicitly on λ(i). There are four case for the types of rows. Let’s look
at the weight of the rows in each of these cases.

• λ(i−1) � λ(i) � λ(i+1): This means we have two white rows. The weight is
given by

x
|λ(i)|−|λ(i−1)|
i x

|λ(i+1)|−|λ(i)|
i+1 .

Looking only at the parts involving λ(i), we see that we would like

(xix
−1
i+1)|λ

(1)| = q|λ
(i)| ⇐⇒ xix

−1
i+1 = q

Choosing xi = q−i and xi+1 = q−(i+1) gives the desired equality.

• λ(i−1) � λ(i) � λ(i+1): This means row i is white, while row i+1 is gray. The
weight of the two rows is

x
|λ(i)|−|λ(i−1)|
i x

ki+1

i+1 x
|λ(i)|−|λ(i+1)|
i+1

where ki+1 is the number of paths exiting row i + 1. Looking only at the
parts involving λ(i), we see that we would like

(xixi+1)|λ
(1)| = q|λ

(i)| ⇐⇒ xixi+1 = q

Choosing xi = q−i and xi+1 = qi+1 gives the desired equality.

• λ(i−1) � λ(i) � λ(i+1): This means row i is gray, while row i+1 is white. The
weight of the two rows is

xkii x
|λ(i−1)|−|λ(i)|
i x

|λ(i+1)|−|λ(i)|
i+1

where ki is the number of paths exiting row i. Looking only at the parts
involving λ(i), we see that we would like

(xixi+1)−|λ
(1)| = q|λ

(i)| ⇐⇒ x−1
i x−1

i+1 = q

Choosing xi = qi and xi+1 = q−(i+1) gives the desired equality.

• λ(i−1) � λ(i) � λ(i+1): This means both rows are gray. The weight of the two
rows is

xkii x
|λ(i−1)|−|λ(i)|
i x

ki+1

i+1 x
|λ(i)|−|λ(i+1)|
i+1

Looking only at the parts involving λ(i), we see that we would like

(x−1
i xi+1)|λ

(1)| = q|λ
(i)| ⇐⇒ x−1

i xi+1 = q

Choosing xi = qi and xi+1 = qi+1 gives the desired equality.

We see that choosing xi = q±i with + for gray and − for white makes the weight
of the path configuration proportional to qvol(Λ). However, we have extra xkii factors
whenever row i is a gray row. These combine to give the extra factor of Aλ(q). �

This lemma, along with the bijection between reverse plane partitions and path
configurations, tells us that up to an overall factor the generating function of reverse
plane partitions of shape λ is equal to the partition function Zλ of a certain vertex
model. We are left to compute this partition function. For this we rely on the YBE
(4.1). Let’s see how this works in our example.



22 NOTES ON PLANE PARTITIONS

In our running example, we have three gray rows and four white rows. Let’s
consider a vertex model with all the gray rows on the bottom and all the white rows
on top.

q2

q5

q7

q−1

q−3

q−4

q−6

After some inspection, you can notice that there is only one valid path configuration
for this vertex model

q2

q5

q7

q−1

q−3

q−4

q−6

and it has weight Aλ(q). Now we would like to rearrange the rows into the vertex
model from our example. To do this we turn to the YBE.

Let’s look at rows three and four. We can use the train argument to get

q6

q7 q7 q7 q7 q7 q7 q7 q7

q−1 q−1 q−1 q−1 q−1 q−1 q−1 q−1

= q6

q−1 q7 q7 q7 q7 q7 q7 q7

q7 q−1 q−1 q−1 q−1 q−1 q−1 q−1

= . . . = q6

q−1 q−1 q−1 q−1 q−1 q−1 q−1 q−1

q7 q7 q7 q7 q7 q7 q7 q7
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We would like to remove the cross at right side. There are two options for how the
path look in the cross:

or

1− q6 1

If we choose the right option then the path must exit to the right in the white row.
There will be an infinitely long segment of of vertices in which in the bottom row
there is a path going horizontal while the top row is empty. Each of these pairs
contributes a weight of q6. If we choose q such that |q| < 1, then the infinite power
of q will give the rows zero weight.

If we choose the left option then we have a finite power of q in the weight, so the
weight stays nonzero. Thus we have

q2

q5

q7

q−1

q−3

q−4

q−6

=

q6

q2

q5

q−1

q7

q−3

q−4

q−6

=

q2

q5

q−1

q7

q−3

q−4

q−6

× (1− q6)

where we remove the cross on the right at the cost of its weight 1 − q6. We can
repeat this process, moving the top gray row all the way to the top collecting the
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weight of the crosses along the way. We get

q2

q5

q7

q−1

q−3

q−4

q−6

=

q2

q5

q−1

q−3

q−4

q−6

q7

× (1− q6)(1− q4)(1− q3)(1− q)

Notice that the powers of q here are exactly the hook length of the first row of λ:

(1− q6)(1− q4)(1− q3)(1− q) =
∏

x∈first row of λ

(1− qhλ(x))

We now move the next gray row to the correct position

q2

q5

q7

q−1

q−3

q−4

q−6

=

q2

q−1

q−3

q−4

q5

q−6

q7

× (1−q6)(1−q4)(1−q3)(1−q)
·(1−q4)(1−q2)(1−q)

where the new factors of q are the hook length of the second row of λ. Now the final
gray row:

q2

q5

q7

q−1

q−3

q−4

q−6

=

q−1

q2

q−3

q−4

q5

q−6

q7

×
(1−q6)(1−q4)(1−q3)(1−q)
·(1−q4)(1−q2)(1−q)

·(1−q)

We can divide the terms on the RHS coming from the crosses onto the LHS and
we get

Zλ = Aλ(q)
∏
x∈λ

1

1− qhλ(x)
.
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Recall from Lemma 5.1 that we have

Zλ = Aλ(q)
∑

Λ∈RPP (λ)

qvol(Λ).

Putting these together, we see that∑
Λ∈RPP (λ)

qvol(Λ) =
∏
x∈λ

1

1− qhλ(x)

as desired.

Exercise 21. Show that this works in general, thus proving Thm. 3.6. (Difficulty
rating: 3)

6. A little bit extra

Note that the we by choosing a rectangular partition, the generating function
for RPP given in Thm. 3.6 implies the generating function for PP with restricted
numbers of rows and columns given in Prop. 3.3. (See Exercise 15.) However, in the
world of plane partitions often more restrictions are added. For example, one often
considers plane partitions with restrictions on the number of columns, the number
of rows, and the maximum allowed filling. These are called boxed plane partitions.
Suppose the number of rows is restricted to be a, number of columns restricted to
be b, the maximum filling restricted to be c. In terms of stacks, of cubes, one can
think of the stacks being restricted to stay inside an a× b× c box (thus the name).
In terms of lozenge tilings, these correspond to tilings of an a× b× c hexagon.

Boxed plane partitions also have a nice generating function. Let B(a, b, c) denote
the set of all boxed PP described above. We have

Theorem 6.1. The generating function for plane partitions restricted to an a×b×c
box is given by∑

Λ∈B(a,b,c)

q|Λ| =
a∏
i=1

b∏
j=1

c∏
k=1

1− qi+j+k−1

1− qi+j+k−2
=

a∏
i=1

b∏
j=1

1− qi+j+c−1

1− qi+j−1
.

Since we are restricting everything to fit in an a × b × c box, there are a finite
number of possible plane partitions (this is not this case if the maximum allowed
filling is unrestricted). By carefully taking the limit as q → 1 in the above theorem,
we have

Corollary 6.2. Let N(a, b, c) be the number of plane partitions restricted to an
a× b× c box. Then

N(a, b, c) =
a∏
i=1

b∏
j=1

c∏
k=1

i+ j + k − 1

i+ j + k − 2
.

(Equivalently, this counts the number of lozenge tilings of an a× b× c hexagon.)

Exercise 22. Prove Cor. 6.2 starting from Thm. 6.1. (Difficulty rating: 2)
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One might try to prove Thm. 6.1 via the vertex model just as we did for Thm.
3.6. The extra restriction on the maximum allowed filling translates to a restriction
on the length of the rows of the vertex model. Unfortunately, this makes our row
swapping argument using the YBE more difficult (can you see why this is the case?)
and I am not aware of a way to make the argument work.

For some final remarks, I’d like to mention that there is a large field of study
involving large random tilings. As we have seen lozenge tilings are related to plane
partitions, and there are many other cases where tilings can be translated to other
combinatorial objects. Understanding the combinatorics can help understand cer-
tain probabilistic questions. I leave you with a lozenge tiling of a 120 × 120 × 120
hexagon chosen uniformly at random from all possible lozenge tiling (ignore the top
left and top right corners which are frozen due to the boundary conditions on the
top).

(Courtesy of Leo Petrov: https://lpetrov.cc/)


	1. Basics of partitions
	2. Interlacing partitions
	2.1. Semi-standard Young tableaux
	2.2. Tilings of the Aztec diamond

	3. Plane Partitions
	3.1. Reverse Plane partitions

	4. Five-vertex models
	4.1. The first five-vertex model
	4.2. Yang-Baxter Integrability
	4.3. The second five-vertex model

	5. Reverse plane partitions revisited
	6. A little bit extra

