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An Aztec Diamond (AD) of rank n is the union of squares in the plane such that
lz| + |y| < n. This gives us a diamond shape. Note that there are 4 types of tiles:
vertical and horizontal, each with 2 different ways they align on a checkerboard
background. We can color them for easier visualization.

Fig. 1: AD of rank 3
For the uncoupled AD described above, there exists an algorithm to generate a
tiling uniformly at random from all possible tilings [4]. This semester, we looked
at coupled AD’s. Instead of generating a single tiling, we generate two. We label
one of them as the "smaller" tiling and we look at "interactions" between them.
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Fig. 2: Interactions. Smaller tiles are outlined in blue, bigger tiles in orange

Imagine placing the two tilings on top of each other and looking for these patterns.
Each occurrence is an interaction. We now define some weighting parameter ¢
and we consider generating two tilings, not uniformly at random, but with proba-
bility proportional to t* where w is the number of interactions, or weight, that the
two tilings have. [5] describes a slightly modified algorithm for generating coupled
tilings. This gives us interesting shapes.

Fig. 3: Rank 100 Tilings at t=1,2,00. Bigger tilings on top

Note that the t = 1 is exactly the uncoupled AD. Much is known about this, such
as that the disordered region in the middle approaches a circle as the rank of the
AD goes to co. The t = 0,00 cases are very restrictive. They are so restrictive,
In fact, that a bijection exists between a single uncoupled AD and a pair of AD’s
att =0ort = oo [2]. This allows us to to have known results about the ¢ = 0, co
cases as well. The ¢t = 0 case looks symmetric to ¢ = oc if flipped across the line
y = x, and likewise fort = a and t = 1/a.

In Fig. 3 we see that around the edges of the unordered region there are distinct "paths". In
fact, there is a bijection between paths and tilings. We expect these paths to move around
a little for random tilings. In particular, if we define X (0) to be the distance, in number of
squares, from the center of the AD up to the top-most path, the distribution of X (0) has been
shown to converge to the Tracy-Widom (TW) F5 distribution after some scaling and the rank
goes to infinity. In fact, the :th top path under the same scaling appears to converge to
the F2Z distribution [3]. We can also look at the maximum "height" of the paths over their
entire trajectories. The distribution of these maxima has been shown to converge to the
TW F distribution after some scaling and the rank goes to infinity. In fact, taking the max
of the «th top path appears to converge to the Ff distribution with some analytically as-yet-
undetermined offset, experimentally found to be around 1.3, 2.2, and 3.1 for the second,
third, and fourth paths. These offsets are not included in the below plots.
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Fig. 4: 10,000 trials with uncoupled rank 500 AD. F,~* and F}™*

We can look at the interactions in coupled tilings in terms of their paths. The four interactions
may seem arbitrary, but they actually serve to, in the cases of t = 0, oo, force the paths of
the smaller and larger tilings to not cross. This allows us to translate results about the
uncoupled AD’s paths into results about the limiting ¢ = 0, oo cases. In particular, the small
and larger tilings alternate paths, so we get the same distributions associated with different
paths.
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Fig. 5: 10,000 trials with rank 500 AD, t = oc. FQl‘4 and F11‘4. Circles are smaller tiling, X’s are bigger tiling

There is some error in the plots above; they are not quite aligned with the true distributions
seen at t = 1. This is due to finite size AD’s - it is computationally intensive to generate
large rank AD’s! Very interesting results occur when we pick ¢ between 1 and oco. Very little
IS known about these. Below is t = 2.
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Fig. 6: 10,000 trials with rank 500 AD, ¢t = 2. F,~* and F|~*. Circles are smaller tiling, X’s are bigger tiling

The top paths of the tilings is related to the Airy Process. A lot is known about
this object. In fact, the Tracy-Widom distributions we see in the edge fluctuations
are related to the Airy Process. Another result from the Airy Process that we
computationally checked is the covariance between the middle of the top path
and points near the middle. For points very near the middle, their covariance
should decay linearly.
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Fig. 7: Covariance. Predicted linear trend shown. 200 trials with rank 500 AD, t = 1.

Summary

We were able to experimentally verify many results associated with the uncou-
pled Aztec Diamond and, through the bijection, results about coupled Aztec
Diamonds at ¢ = 0,00. We generated experimental results for some cases
where t £ 0, 1, .

A new results is one regarding the Ff series of distributions relating to the ith
top path. They appear to follow the F7 distributions but with some offset.

One of the most surprising results was the ¢ = 2 case, particularly the larger
tiling’s topmost path. At the ¢ = 1, oo cases it lines up exactly with the F5 and
F distribution, but at intermediary values it does not. Future work could explore
these cases, either theoretically or experimentally.
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