
NOTES ON HOOK WALKS

1. The hook length formula

Let fλ be the number of standard Young tableaux of shape λ. Our first goal will
be to prove the hook length formula are given by

fλ =
|λ|!∏

x∈λ hλ(x)
(1.1)

where the product is over all cells x in the Young diagram of λ and hλ(x) is the hook
length of the cell x. We’ll follow the proof in “A Probabilistic Proof of a Formula
for the Number of Young Tableaux of a Given Shape” (1979) by C. Greene, A.
Nijenhuis, and H. S. Wilf.

First some examples:

Example 1.1. For the following partitions we write the hook length in each cell
and compute fλ using (1.1).

6 4 3 1

4 2 1

1

5 3 2

4 2 1

1

6 4 2 1

3 1

1

5 4 3 1

3 2 1

f (4,3,1) = 8!
6·42·3·2 = 70 f (3,3,1) = 7!

5·4·3·22 = 21 f (4,2,1) = 7!
6·4·3·2 = 35 f (5,3) = 7!

5·4·32·2 = 14

Note that

f (4,3,1) = f (3,3,1) + f (4,2,1) + f (5,3).

The identity in above is an example of a more general recursion relation for the
fλ. To describe this, we will need some definitions. A cell x ∈ λ is a corner is there
are no cells directly to its right or directly below. Let C(λ) be the set of all corner
cells of λ. One can show that

fλ =
∑

x∈C(λ)

fλ−x (1.2)

where λ− x is the partition one gets by removing the corner cell x from the Young
diagram of λ.

Exercise 1. Characterize the corner cells in terms of their hook length. (Difficulty
rating: 1)

Exercise 2. Without using the hook length formula, give a bijective proof of the
identity (1.2). (Difficulty rating: 2)

1

2 NOTES ON HOOK WALKS

In light of the identity (1.2), we could try to prove the hook length formula by
showing that the RHS of (1.1) follows the same recursive formula. It is clear that
both the left- and right-hand side of (1.1) are equal for λ = (1) as both sides of
(1.1) are equal to 1. So we’ve reduced our problem to showing that the RHS has
the same recursive formula, in particular

|λ|!∏
y∈λ hλ(y)

=
∑

x∈C(λ)

|λ− x|!∏
y∈λ−x hλ−x(y)

. (1.3)

Of course, this is a complicated formula involving possible a large sum of large
product. So we must be a little clever.

Rearranging (1.3) we find∑
x∈C(λ)

1

|λ|

∏
y∈λ hλ(y)∏

y∈λ−x hλ−x(y)
= 1. (1.4)

One should notice some simple but important properties of this rearrangement:

• For each x ∈ C(λ) we assign a positive real number.

• These numbers add up to 1.

Thus we can think of this as giving a probability distribution on the corner cells
of λ! The payoff here is that proving that the RHS of (1.1) satisfies the recursive
formula (1.3) is equivalent to constructing a probability distribution on the corners
of λ in which the probability of choosing a particular corner x ∈ C(λ) is given by

1

|λ|

∏
y∈λ hλ(y)∏

y∈λ−x hλ−x(y)
. (1.5)

If we had such a distribution then summing the above over all the corners would be
1, showing that (1.4) is satisfied.

Note that if we fix the corner x, most of the hook length are the same in λ − x
as they are in λ. The only one which change are those in the cohook of x: the cells
lying above x in the same column or to the left of x in the same row:

x

In green, the cohook of the cell x.

If y ∈ cohook(x) then hλ−x(y) = hλ(y) − 1. With this information we can rewrite
(1.5) as

1

|λ|

∏
y∈λ hλ(y)∏

y∈λ−x hλ−x(y)
=

1

|λ|
∏

y∈cohook(x)

hλ(y)

hλ(y)− 1

=
1

|λ|
∏

y∈cohook(x)

(
1 +

1

hλ(y)− 1

) (1.6)

NOTES ON HOOK WALKS 3

1.1. The hook walk algorithm. Now that we have reformulated the problem as
a probability question, let’s state an algorithm that does the job.

The hook walk algorithm:

(1) Choose a cell u0 of λ uniformly at random.

(2) Suppose we are at cell ui: Pick a new cell ui+1 uniformly at random from
the cells in the hook of ui, not including ui.

(3) Repeat step (2) getting a sequence of cells u0, u1, u2, . . ., until the process
terminates at a corner cell x.

Proposition 1.2. Under this algorithm the probability of ending at a given corner
cell x ∈ C(λ) is exactly (1.5).

Let’s do an example of this hook walk.

Example 1.3. Let λ = (7, 6, 6, 5, 2, 1). We draw a possible hook walk below. The
black dots indicate the location of each jump.

• •

• •
•

In this example we have u0 = (1, 2), u1 = (1, 4), u2 = (3, 4), u3 = (3, 4), and
x = (4, 5).

Suppose we fix a corner x. We have

P(hook walk ends at x) =
∑
u0∈λ

P(hook walk ends at x|hook walk starts at u0)P(hook walk starts at u0)

=
1

|λ|
∑
u0∈λ

P(hook walk ends at x|hook walk starts at u0)

(1.7)
where we use the fact that we choose our starting cell uniformly at random.

Let consider the sequence of cells u0, u1, . . . , x we reach along our hook walk.
Note that if we are at a cell u the probability that we jump to a cell v in its hook
is given by

1

hλ(u)− 1
.

Thus the probability of this particular hook walk is∏
i≥0

1

hλ(ui)− 1

4 NOTES ON HOOK WALKS

and we have

∑
u0∈λ

P(h.w. ends at x|h.w. starts at u0) =
∑
u0∈λ

∑
(u0,u1,...,x)
u0,x fixed

∏
i≥0

1

hλ(ui)− 1

=
∑

(u0,u1,...,x)
x fixed

∏
i≥0

1

hλ(ui)− 1

(1.8)

We will simplify this using the following lemmas.

Lemma 1.4. Let a, b, c, and d be four cells of λ that form a rectangle. For example:

a b

c d

Then we have

hλ(a) + hλ(d) = hλ(b) + hλ(c).

In particular, if d is a corner cell we have

hλ(a)− 1 = (hλ(b)− 1) + (hλ(c)− 1).

Lemma 1.5. Fix a corner x = (r, c) of λ, where we indicate the row and column
coordinate. For every hook walk we can define the projection sets A and L where A
is the set of all columns the hook walk visits and L and the set of all rows. Define
hw(A,L) to be the set of all hook walks with the given projection sets A and L.

∑
(u0,u1,...,x)∈hw(A,L)

x fixed

∏
i≥0

1

hλ(ui)− 1
=
∏
a∈A

s.t a6=r

(
1

hλ((a, c))− 1

) ∏
l∈L

s.t l 6=c

(
1

hλ((r, l))− 1

)

Proof. This is the main technical lemma we need. We will prove it by induction on
the distance from the corner.

Call the probability on the LHS P (A,L). Let’s order the elements of A from least
to greatest a0 < a1 < . . . and similarly for the elements of L. Note that the hook
walks must start at (a0, l0). After one step, the walk could either have jumped right
to (a0, l1) or down to (a1, l0). Both of these jumps happen with equal probability:

NOTES ON HOOK WALKS 5

1
hλ((a0,l0))−1

. We have

P (A,L) =
1

hλ((a0, l0))− 1
(P (A− a0, L) + P (A,L− l0))

=
1

hλ((a0, l0))− 1

 ∏
a∈A−a0
s.t a6=r

(
1

hλ((a, c))− 1

) ∏
l∈L

s.t l 6=c

(
1

hλ((r, l))− 1

)

+
∏
a∈A

s.t a6=r

(
1

hλ((a, c))− 1

) ∏
l∈L−l0
s.t l 6=c

(
1

hλ((r, l))− 1

)

=
1

hλ((a0, l0))− 1

(hλ(a0, c)− 1)
∏
a∈A

s.t a6=r

(
1

hλ((a, c))− 1

) ∏
l∈L

s.t l 6=c

(
1

hλ((r, l))− 1

)

+(hλ(r, l0)− 1)
∏
a∈A

s.t a6=r

(
1

hλ((a, c))− 1

) ∏
l∈L

s.t l 6=c

(
1

hλ((r, l))− 1

)
=

∏
a∈A

s.t a6=r

(
1

hλ((a, c))− 1

) ∏
l∈L

s.t l 6=c

(
1

hλ((r, l))− 1

)
(hλ(a0, c)− 1) + (hλ(r, l0)− 1)

hλ((a0, l0))− 1

=
∏
a∈A

s.t a6=r

(
1

hλ((a, c))− 1

) ∏
l∈L

s.t l 6=c

(
1

hλ((r, l))− 1

)
where the first equality follows by induction and the last equality follows by Lemma
1.4. �

Lemma 1.6. Fix a corner x of λ. Then∑
(u0,u1,...,x)
x fixed

∏
i

1

hλ(ui)− 1
=

∏
y∈cohook(x)

(
1 +

1

hλ(y)− 1

)

where the sum is over all hook walks that end at x.

Proof. First we write the LHS as∑
A,L

∑
(u0,u1,...,x)∈hw(A,L)

x fixed

∏
i

1

hλ(ui)− 1
=
∑
A,L

∏
a∈A

s.t a6=r

(
1

hλ((a, c))− 1

) ∏
l∈L

s.t l 6=c

(
1

hλ((r, l))− 1

)

using Lemma 1.5. Note that each choice of A and L tell us which of the cohooks to
pick when we expand out the product on the RHS. �

Now we just need to put everything together. Together with Eqn. (1.8), Lemma
1.6 tells us that∑

u0∈λ

P(h.w. ends at x|h.w. starts at u0) =
∏

y∈cohook(x)

(
1 +

1

hλ(y)− 1

)
.

6 NOTES ON HOOK WALKS

Plugging this into Eqn. (1.7), we find that

P(hook walk ends at x) =
1

|λ|
∏

y∈cohook(x)

(
1 +

1

hλ(y)− 1

)
which we know from Eqns. (1.5) and (1.6) is exactly what we desired. Thus we have
proven Proposition 1.2 from which the hook length formula follows.

Exercise 3. Show that the hook walk algorithm always terminates. (Difficulty rating:
1)

Exercise 4. Prove Lemma 1.4. (Difficulty rating: 1)

Exercise 5. Suppose λ is a partition of n. Consider the following process for con-
structing a random standard Young tableaux of shape λ:

(1) Use the hook walk algorithm to choose a corner cell of λ. Fill that cell with
an n and delete it from the Young diagram.

(2) Now use the hook walk algorithm to select another corner cell of the new
Young diagram. Fill that cell with an n− 1 and delete it from the diagram.

(3) Repeat this process until there are no cells left.

Show that this always generates a standard Young tableaux. Show that the tableaux
that is generated is chosen uniformly from all possible standard Young tableaux of
shape λ. (Difficulty rating: 2)

Exercise 6. Using Lemma 1.6, show that the probability that a hook walk ends at a
corner x = (r, c) given that it starts at u0 = (a0, l0) with a0 < r and l0 < c is given
by[

1

hλ((a0, c))− 1

∏
a0<i<r

(
1 +

1

hλ((i, c))− 1

)]
·

[
1

hλ((r, l0))− 1

∏
l0<j<c

(
1 +

1

hλ((r, j))− 1

)]
Exercise 7. Prove that in a rooted tree T (with root at top) with n vertices, the
number of ways to label the vertices 1 through n so that every vertex’s label is smaller
than its parent’s label is

n!∏
v∈T h(v)

where h(v) is the number of vertices in the subtree originating from v (including v).
(Difficulty rating: 2)

NOTES ON HOOK WALKS 7

2. Growing Young Diagrams

This method of argument has been applied to many other problems in combina-
torics. Here we sketch a proof of the identity∑

λ`n

(fλ)2 = n! (2.1)

We will follow the ideas of the paper “Another Probabilistic Method in the Theory
of Young Tableaux” (1981) by C. Greene, A. Nijenhuis, and H. S. Wilf.

We rewrite (2.1) as ∑
λ`n

(fλ)2

n!
= 1

and think of this as giving us a probability measure on the the set of partitions of
n such that

P(λ) =
(fλ)2

n!
.

Now recall Eqn. (1.2), which says

fλ =
∑

x∈C(λ)

fλ−x.

Using this we have
(fλ)2

n!
=
fλ

n!
fλ

=
∑

x∈C(λ)

fλ

n!
fλ−x

=
∑

x∈C(λ)

fλ

nfλ−x
(fλ−x)2

(n− 1)!

(2.2)

We interpret this as follows: Suppose we have a probability distribution on partitions
λ′ of n − 1. Say we have a Markov chain that tells us how to our partitions λ′ of
n− 1 into partitions λ of n with transition probabilities P(λ′ → λ). Then this gives
us a probability distribution of the partitions of n through

P(λ) =
∑

λ′`n−1

P(λ′ → λ)P(λ′).

Suppose we know that (2.1) holds for partitions λ′ of n − 1, and so can choose

P(λ′) = (fλ
′
)2

(n−1)!
. Next let’s assume that we can choose the transition probabilities to

be

P(λ′ → λ) =

{
fλ

nfλ′
if you can delete a single corner of λ to get λ′

0 o.w.

Then the calculation in (2.2) tells us that the probability measure we get on parti-
tions of n is exactly

P(λ) =
(fλ)2

n!
.

Since this is a probability distribution, summing over all λ must give us 1, and this
implies Eqn. (2.1).

8 NOTES ON HOOK WALKS

All of this works as long as our transition probabilities are well-defined. They
are clearly positive real numbers, so it is enough to check∑

λ : λ′→λ

fλ

nfλ′
= 1 (2.3)

where λ′ → λ means that we can add a single corner cell to λ′ to get λ. Fixing λ′,
we would like to construct a variant of our hook walk that chooses to add the cell x
to λ′ with probability

fλ
′+x

nfλ′
=

∏
y∈λ′ hλ′(y)∏

y∈λ′+x hλ′+x(y)
(2.4)

where we used the hook length formula. Note that we want to add a cell to λ′, that
is, we are growing our partition.

2.1. Complementary Hook Walk. Here we will describe the hook walk that does
the job and leave the details of the proof to the reader.

The complementary hook walk algorithm

(1) Embed λ′ into a rectangle R of size p× q with p larger than the first column
of λ′ and q larger than the first row. Note that R − λ′ is itself the Young
diagram of some partition after rotating 180 degrees.

(2) Do a hook walk on R− λ′ starting from the cell (1, 1) (equivalently (p, q) in
the non-rotated picture).

(3) The hook walk will terminate at a corner of R − λ′. Add this cell to λ′ to
get λ.

Let’s do an example to make this clear.

Example 2.1. Let λ′ = (4, 3, 1). Embed this partition in the rectangle R of length
4 × 6. Note R − λ′, after rotating, is the partition (6, 5, 3, 2). We show a possible
complementary hook walk below. The black dots indicate the location of the jumps.

• •

• •

7→

We add the terminal cell of the hook walk to our partition and get λ = (4, 4, 1).

Exercise 8. Prove that the complementary hook walk adds cells to λ′ with the desired
probability (2.4). (Difficulty rating: 3).

The probability distribution P(λ) = (fλ)2

n!
is known as the Plancherel measure. It

is interesting in its own right and has relations to many branches of mathematics.
Note that by starting with the empty partition and repeatedly using the comple-
mentary hook walk, we can grow a large Plancherel-distributed random partition.
Such partitions exhibit an interesting limit shape phenomenon. See the book “The
Surprising Mathematics of Longest Increasing Subsequences” by Dan Romik for an
a nice exposition of these topics.

NOTES ON HOOK WALKS 9

3. Oscillating tableaux

In this section we combine the two types of hook walks we discussed previously.
We follow “Area statistics for large oscillating tableaux” (2020) D. Keating.

An oscillating tableaux of length N and shape λ is a sequence of partitions

{λ(0) = ∅, λ(1), . . . , λ(N−1), λ(N) = λ}
such that either λ(i) → λ(i+1) or λ(i+1) → λ(i). That is, to go from the i-th to the
(i + 1)-th partition you add or delete a corner. We denote the set of all oscillating
tableaux of length N and shape λ by OT (λ,N). It is a well-known fact that the
number of such tableaux for fixed shape and length has a very simple formula. Let
λ be a partition with |λ| = k. Then for all n ∈ N let N = k + 2n, we have

fλN = #OT (λ,N) =

(
N

k

)
(N − k − 1)!!fλ (3.1)

where fλ is the number of standard Young tableaux of shape λ. Further, #OT (λ, l) =
0 if l 6= k + 2n for some n ∈ N.

Example 3.1. As an example, here are all oscillating tableaux of shape λ = ∅ and
length 4.

∅ → (1)← ∅ → (1)← ∅
∅ → (1)→ (1, 1)← (1)← ∅
∅ → (1)→ (2)← (1)← ∅

We would like to give a proof of Eqn. (3.1). First, we will a recursion relation
for the oscillating tableaux.

Lemma 3.2.
fλN =

∑
µ→λ

fµN−1 +
∑
λ→µ

fµN−1

Exercise 9. Prove Lemma 3.2 without using the formula in (3.1). (Difficulty rating:
1)

If we can show that the formula on the RHS of (3.1) satisfies the same recursion
relation then we are done (modulo the base case). Showing this it is equivalent to
showing

k

N

∑
µ : µ→λ

fµ

fλ
+
N − k
N

∑
µ : λ→µ

fµ

(k + 1)fλ
= 1

We can think of this as a probability distribution on the corners that can be added
or removed for λ. In particular, the probability of adding a corner x is

N − k
N

fλ+x

(k + 1)fλ

while the probability of removing a corner x is

k

N

fµ

fλ
.

If we can construct an algorithm that selects corners with these probabilities, then
we would know that they sum to 1, and the recursion would be satisfied.

10 NOTES ON HOOK WALKS

3.1. The oscillating hook walk algorithm. Comparing the probabilities above
to what we have covered previously suggests the following algorithm.

The oscillating hook walk algorithm:

(1) Choose to add a corner with probability N−k
N

or remove a corner with prob-

ability k
N

.

(2) (a) If you chose to add a corner, pick which corner to add by doing a com-
plementary hook walk.

(b) If you chose to remove a corner, pick which corner to remove by doing
a hook walk.

In fact, the proof that this has gives the desired distribution on the possible corners
to add or remove is almost immediate from what we know know about the hook
walk and the complementary hook walk.

Exercise 10. Prove the oscillating hook walk algorithm gives the desired probabili-
ties. (Difficulty rating: 1)

Iterating this, we get a nice algorithm for generating uniformly random oscillating
tableaux.

(1) Fix N and λ such that |λ| = k and N = k + 2n for some n ∈ N.

(2) Set λ(N) = λ. Set X = 0. Set Y = k.

(3) While X < N :

(a) With probability Y
N−X , remove a corner from λ(N−X) using the hook-

walk algorithm. Set the new partition to λ(N−X−1). Take X → X + 1,
Y → Y − 1.

(b) Otherwise, add a corner to λ(N−X) using the complementary hook-walk
algorithm. Set the new partition to λ(N−X−1). Take X → X + 1,
Y → Y + 1.

(4) Return the oscillating tableaux {λ(0) = ∅, λ(1), . . . , λ(N−1), λ(N) = λ}.

Exercise 11. (1) Write a program the generates uniformly random standard
Young tableaux of shape λ using the hook walk algorithm.

(2) Write a program the generates Plancherel-distributed partitions of n using
the complementary hook walk algorithm.

(3) Write a program that generates uniformly random oscillating tableaux of
shape λ and length N using the oscillating hook walk algorithm.

(Difficulty rating: 2)

	1. The hook length formula
	1.1. The hook walk algorithm

	2. Growing Young Diagrams
	2.1. Complementary Hook Walk

	3. Oscillating tableaux
	3.1. The oscillating hook walk algorithm

