
NOTES ON BIJECTIVIZATION

1. Basics of Bijectivization

To start with we need two finite sets A and B. We’ll suppose that each these sets
come with a weight function wA : A → R>0 and wB : B → R>0, respectively, and
that they satisfy the equality ∑

a∈A

wA(a) =
∑
b∈B

wB(b). (1.1)

Another way to describe this equality is to say the partition functions of each set
are equal.

While Eqn. (1.1) tells us that the sum of the weights are equal, we would like
more precise information, in particular, where does each term on the LHS contribute
to the RHS and vice-versa. This is where bijectivization comes in. To be precise, a
bijectivization is a collection of maps pfwd, pbwd : A× B → R≥0, which we write as
pfwd(a→ b) and pbwd(b→ a), such that

• They satisfy the sum-to-one property∑
b∈B

pfwd(a→ b) = 1 for all a ∈ A∑
a∈A

pbwd(b→ a) = 1 for all b ∈ B.
(1.2)

• They satisfy the reversibility condition

wA(a)pfwd(a→ b) = wB(b)pbwd(b→ a). (1.3)

We call pfwd the forward maps and pbwd the backward maps.

Remark 1.1. The first bullet point tells us that we should think of these maps as
transition probabilities for certain Markov chains. That is, pfwd(a→ b) tells us the
probability that starting from a we go to b, while pbwd(b→ a) tells us the probability
that starting from b we go to a. The second bullet point tells us that these Markov
chains are in some sense dual to one another.

Note that a bijectivization gives us a refinement of Eqn. (1.1). We now have∑
a∈A

wA(a) =
∑
a∈A

∑
b∈B

wA(a)pfwd(a→ b) =
∑
b∈B

∑
a∈A

wB(b)pbwd(b→ a) =
∑
b∈B

wB(b).

where the first and last equalities follow from the sum-to-one property (1.2) and
the middle equality follows from the reversibility condition (1.3). One can think of
pfwd(a → b) as telling us what fraction of wA(a) on the LHS contributes to wB(b)
on the RHS.
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It is important to note that in general bijectivization is not unique, as we will
see in the following example.

Example 1.2. Let A = {a1, a2} and B = {b1, b2}. Suppose our weight functions
are such that

wA(a1) = wA(a2) = wB(b1) = wB(b2) = 1.

In this case the reversibility condition (1.3) tells us that

pfwd(ai → bj) = pbwd(bj → ai)

for each i, j ∈ {1, 2}.

Suppose r1, r2 ∈ (0, 1). Let’s choose

pfwd(a1 → b1) = r1 and pfwd(a2 → b2) = r2.

By the sum-to-one property (1.2), we then must have

pfwd(a1 → b2) = 1− r1 and pfwd(a2 → b1) = 1− r2.

For the backward maps, the sum-to-one property gives us the constraint on r1 and
r2 that

pbwd(b1 → a1) + pbwd(b1 → a2) = r1 + 1− r2 = 1

pbwd(b2 → a1) + pbwd(b2 → a2) = 1− r1 + r2 = 1

This is satisfied if r1 = r2.

We see that for any r ∈ (0, 1) defining our forward and backward maps as

pfwd(ai → bj) =

{
r, if i = j

1− r, o.w.

pbwd(bj → ai) =

{
r, if i = j

1− r, o.w.

is a valid choice of bijectivization.

However, in some special cases, there is a unique bijectivization. Clearly, if
|A| = |B| = 1 then for Eqn. (1.1) to be true we must have wA(a) = wB(b) and the
only choice of bijectivization is pfwd(a→ b) = 1 = pbwd(b→ a).

For a more complicated case we have the following.

Proposition 1.3. If |A| = 1 then there is a unique bijectivization given by

pfwd(a→ b) =
wB(b)∑

b′∈B
wB(b′)

and

pbwd(b→ a) = 1

for a ∈ A and all b ∈ B.

If |B| = 1 then there is a unique bijectivization given by

pfwd(a→ b) = 1
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and

pbwd(b→ a) =
wA(a)∑

a′∈A
wA(a′)

for b ∈ B and all a ∈ A.

Exercise 1. Prove Prop. 1.3. (Difficulty rating: 2)

2. Bijectivizing the Yang-Baxter Equation

2.1. Review of the 5-vertex model. Recall the five-vertex model whose local
configurations and weights are given by

x :

1 x x 1 1

with any other local path configuration having weight zero. We will also need the
cross vertices

z :

1− z z 1 z 1

where below we also write the corresponding weight. Together the vertices satisfy
what is known as the Yang-Baxter equation (YBE):

Proposition 2.1. For any choice of boundary condition i1, i2,3 , j1, j2, j3 ∈ {0, 1}
(with 0 indicating there is no path, and 1 indicating there is a path), we have the
equality of partition functions

y
x

i1

i2

i3

j2

j1

j3

x

y
= y

x

i1

i2

i3

j1

j2

j3

y

x
(2.1)

where x and y are the weight parameters at each vertex.

We will think of paths as always moving to the right or upward, so we call
(i1, i2, i3) the entering paths and (j1, j2, j3) the exiting paths. The YBE can be
stated in other words as fixing where paths enter and exit the domains to be the
same on both sides of the equation, then the sum of the weights of the allowed path
configurations on both sides is equal. Consider the following example.

Example 2.2. Suppose we set i2 = j1 = 1 (the black dots) and the rest to zero
(the white dots). Then the YBE says we have the following equality of partition
functions:

y
x

x

y
= y

x
y

x
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Explicitly writing the sum over path configurations, this becomes

w


 = w


+ w




where we see there are two ways to fill in the paths on the left but only one on the
right. Computing the weights we have

LHS: x

RHS: y + x ·
(

1− y

x

)
= x

which are, in fact, equal.

2.2. Applying bijectivization. Note that the YBE (2.1) gives an equality for any
choice of entering and exiting paths. Each of these equations can be seen as an
equality of sums of weights over finite sets. That is, for any choice of entering and
exiting paths we can try to bijectivize the equality coming from the YBE.

To make this more precise, let A(i1, i2, i3; j1, j2, j3) be the set of allowed path
configurations for the domain on the LHS of the YBE (2.1) with boundary condi-
tions given by (i1, i2, i3) for the entering paths and (j1, j2, j3) for the exiting paths.
Similarly, let B(i1, i2, i3; j1, j2, j3) be the set of allowed path configurations for the
domain on the RHS of the YBE (2.1). These sets come with weight functions wA

and wB, respectively, given by the vertex model weights. The YBE ensures that
Eqn. (1.1) ∑

a∈A(i1,i2,i3;j1,j2,j3)

wA(a) =
∑

b∈B(i1,i2,i3;j1,j2,j3)

wB(b)

is satisfied for each choice of i1, i2, i3, j1, j2, j3. So we may try the bijectivize the
equation by finding appropriate transition probabilities pfwdx,y and pbwdx,y , where the
subscripts are there to explicitly denote that the forward and backward maps will
depend on the vertex weights.

Example 2.3. Let us continue Example 2.2. In this case, we have

A(0, 1, 0; 1, 0, 0) =

︸ ︷︷ ︸
a


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and

B(0, 1, 0; 1, 0, 0) =

︸ ︷︷ ︸
b1

,

︸ ︷︷ ︸
b2


.

Note that |A(0, 1, 0; 1, 0, 0)| = 1, so we may apply Prop. 1.3 and get

pfwdx,y (a→ b1) =
w(b1)

w(b1) + w(b2)
=
y

x

pfwdx,y (a→ b2) =
w(b2)

w(b1) + w(b2)
= 1− y

x

and

pbwdx,y (b1 → a) = pbwdx,y (b2 → a) = 1.

This is a valid bijectivization as long as 0 < y
x
< 1.

Exercise 2. Naively, there are 26 = 64 possible boundary conditions one can choose
in the YBE. However, for most of these boundary conditions there are no possible
valid path configurations. In fact, there are only 16 choices that do not result in the
trivial equality 0 = 0. List all 16 of these boundary conditions. (Difficulty rating: 1)

Exercise 3. Show that for any of the boundary conditions, i1, i2, i3, j1, j2, j3, you
found in Exercise 2 either |A(i1, i2, i3; j1, j2, j3)| = 1 or |B(i1, i2, i3; j1, j2, j3)| = 1
(or both). Thus, for our five-vertex model Yang-Baxter equation, there is always a
unique choice of bijectivization. (Difficulty rating: 1)

Exercise 4. For any of the boundary conditions, i1, i2, i3, j1, j2, j3, you found in
Exercise 2 determine pfwdx,y . (Difficulty rating: 1)

2.3. Row swapping. To push this further, consider the following example.

Example 2.4. Consider of the following pair of rows

x x x

y y y

where the bottom boundary is given by the partition µ = (0) and the top boundary
is given by the partition λ = (2). We may introduce an empty cross on the LHS, as
it has weight 1, then repeatedly apply the YBE to swap the two rows, and finally
remove an empty cross from the RHS. Pictorially we have the equality of partition
functions

x x x

y y y
=

x x x

y y y
=

y y y

x x x
=

y y y

x x x
.
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Suppose now we consider a specific configuration

with weight x3. If we let ν be the partition describing the position of the path along
the middle slice, in this case we have ν = (2). Just as before we may introduce an
empty cross on the LHS

Now we use our bijectivized YBE (from Exercise 4) to get

︸ ︷︷ ︸
w/ prob. y

x

or

︸ ︷︷ ︸
w/ prob. 1− y

x

We can think of this as the path either staying in the bottom row (with probability
y
x
) or choosing to jump to the top row (with probability 1− y

x
).

If the path chose to jump upward, then another step of the bijectivized YBE
gives

→ w/ prob. 1.

Another step gives

→ w/ prob. 1

and finally we can remove the empty cross from the RHS. Altogether we see that

→

with probability 1− y
x
.
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If the path had instead chosen to stay in the bottom row, repeatedly applying
the bijectivized YBE gives

→ w/ prob.
y

x

(
1− y

x

)

→ w/ prob.
(y
x

)2

Rather than the YBE just telling us that the partition function of the two rows
remains unchanged after swapping, by bijectivizing we get a Markov chain telling
us how the path configurations update after swapping.

In general, we have a pair of rows whose bottom boundary condition is given
by partition µ, whose top boundary condition is given by a partition λ, and whose
interior path configuration is determined by a partition ν.

λ

µ

← ν
. . . x x x x . . .

. . . y y y y . . .

First, let’s set some notation. Let Zλ/µ(x, y) be the partition function of two
rows with bottom boundary µ, top boundary λ, parameter x in the bottom row,
and parameter y in the top row. This is the partition function of the two rows above.
After swapping the rows using the YBE, the partition function is Zλ/µ(y, x) and we
have

Zλ/µ(x, y) = Zλ/µ(y, x).

Note that we may write the partition function as

Zλ/µ(x, y) =
∑
ν

wx,y(ν)

where the sum is over all partitions ν such that µ � ν � λ and wx,y(ν) is the weight
of the path configuration whose paths cross the interior slice as locations determined
by the partition ν.

Example 2.5. Fix µ = (1, 0) and λ = (3, 1). If ν = (2, 1) then the corresponding
path configuration is

w/ weight x2y.
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The partition function for the two rows is given by

Zλ/µ(x, y)

= wx,y((1, 0)) + wx,y((2, 0)) + wx,y((3, 0)) + wx,y((1, 1)) + wx,y((2, 1)) + wx,y((3, 1))

= y3 + xy2 + x2y + xy2 + x2y + x3.

The Gibbs measure is a probability measure on the possible path configurations
such that the probability of getting a particular path configuration is proportional
to its weight. In particular, we have

Px,y(ν|λ, µ) =
wx,y(ν)

Zλ/µ(x, y)
. (2.2)

Swapping the rows using the bijectivized YBE determines transition probabilities
for the paths along the middle slice to go from ν to another partition ν ′. Let
Px,y(ν → ν ′|λ, µ) be the transition probability from ν to ν ′ given fixed top and
bottom boundary conditions given by λ and µ, respectively.

Exercise 5. Fix µ = (1, 0) and λ = (3, 1). Determine

Px,y((2, 1)→ (2, 0)|λ, µ).

(Difficulty rating: 2).

Exercise 6. Fix µ = (0), λ = (k). For each `, `′ ∈ {0, . . . , k} determine

Px,y((`)→ (`′)|λ, µ).

(Difficulty rating: 2).

Exercise 7. Show that Px,y(ν → ν ′|λ, µ) is only nonzero iff µ � ν ′ � ν � λ.
(Difficulty rating: 2)

The transition probabilities we get from bijectivization behave nicely with the
Gibbs measures in the following sense.

Proposition 2.6. Bijectivization preserves Gibbs measures. That is, if the initial
configuration is sampled according to the Gibbs measure Px,y(·|λ, µ) then the prob-
ability that, after swapping, the path configuration is determined by ν ′ is given by
Py,x(ν ′|λ, µ).

Let’s see this in action in an example.

Example 2.7. Fix µ = (1, 0) and λ = (3, 1). Suppose that the the initial configura-
tion is sampled from the Gibbs measure Px,y(·|λ, µ). Let’s compute the probability
that after swapping we end up with the configuration ν ′ = (2, 1).

First note that there are only two possible starting partitions that can transition
to ν ′ = (2, 1): either ν = (2, 1) or ν = (3, 1). We have

P(ν ′) = Px,y((2, 1)→ (2, 1)|λ, µ)Px,y((2, 1)|λ, µ) + Px,y((3, 1)→ (2, 1)|λ, µ)Px,y((3, 1)|λ, µ).
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Now let’s compute each of the transition probabilities. If ν = (2, 1) we get

→

︸ ︷︷ ︸
w/ prob. y

x

→

︸ ︷︷ ︸
w/ prob. 1

→

︸ ︷︷ ︸
w/ prob. y

x

→

︸ ︷︷ ︸
w/ prob. 1

→

︸ ︷︷ ︸
w/ prob. 1

We see that Px,y((2, 1) → (2, 1)|λ, µ) =
(
y
x

)2
. A similar calculation shows that

Px,y((3, 1)→ (2, 1)|λ, µ) =
(
y
x

)2 (
1− y

x

)
. Plugging these in we get

P(ν ′) =
(y
x

)2
Px,y((2, 1)|λ, µ) +

(y
x

)2 (
1− y

x

)
Px,y((3, 1)|λ, µ)

=
(y
x

)2 x2y

Zλ/µ(x, y)
+
(y
x

)2 (
1− y

x

) x3

Zλ/µ(x, y)

=
y3 + xy2 − y3

Zλ/µ(x, y)

=
xy2

Zλ/µ(y, x)

where in the last equality we use that Zλ/µ(x, y) = Zλ/µ(y, x). Altogether, we have

P(ν ′) =
xy2

Zλ/µ(y, x)
= Py,x((2, 1)|λ, µ)

as we expect from Prop. 2.6.

Sketch of proof of Prop. 2.6. The key calculation is as follows. Consider the YBE

y
x

i1

i2

i3

j2

j1

j3

x

y
= y

x

i1

i2

i3

j1

j2

j3

y

x
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As defined previously, let A := A(i1, i2, i3; j1, j2, j3) be the set of allowed path con-
figurations for the domain on the LHS and let B := B(i1, i2, i3; j1, j2, j3) be the set of
allowed path configurations for the domain on the RHS. Suppose the configuration
on the LHS is sampled with probability proportional to its weight. The probability
we get a particular configuration b ∈ B on the RHS is given by

P(b) =
∑
a∈A

P(a)pfwdx,y (a→ b)

=
∑
a∈A

w(a)pfwdx,y (a→ b)

ZA(x, y)

where ZA(x, y) =
∑

a∈Aw(a). Now using the reversibility condition (1.3), we may
write this as

P(b) =
∑
a∈A

w(b)pbwdx,y (b→ a)

ZA(x, y)

The sum-to-one condition (1.2) gives

P(b) =
w(b)

ZA(x, y)

=
w(b)

ZB(y, x)

where in the last equality we use the fact that Za = ZB (which follows from the
YBE). We see that if the configuration on the LHS is sampled with probability
proportional to its weight then the probability we get a particular configuration on
the RHS is also proportional to its weight.

Now in the general case, we repeat this type of calculation while pushing the cross
through each column. At every step the probability of the resulting configuration
is given by the corresponding Gibbs measure. Pushing the cross all the way to the
right gives the proposition.
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