Arctic Curves for Bounded Lecture Hall Tableaux

David Keating Joint work with S. Corteel and M. Nicoletti

University of California, Berkeley

Berkeley Combinatorics Seminar

September 23, 2019

イロト 不同下 イヨト イヨト

3

1/50

Outline

Bounded Lecture Hall Tableaux

2 Tangent Method

・ロト ・回ト ・ヨト ・ヨト э 2 / 50

Lecture Hall Tableaux

Fix positive integer *n*. Given $\lambda = (\lambda_1, ..., \lambda_n)$ (some λ_i possibly zero). Consider tableaux T of shape λ satisfying

$$\frac{T_{ij}}{n-i+j} \ge \frac{T_{ij+1}}{n-i+(j+1)}$$
$$\frac{T_{ij}}{n-i+j} \ge \frac{T_{i+1j}}{n-(i+1)+j}$$

3 / 50

(See Corteel-Kim 2018.)

Lecture Hall Tableaux

- When λ has only one column, these become lecture hall partitions.
- When $n \to \infty$, the conditions become

$$T_{ij} \ge T_{ij+1}$$
$$T_{ij} > T_{i+1j}.$$

イロト 不得 とくき とくき とうき

4 / 50

These are the same conditions as those for reverse semistandard young Tableaux.

Bounded LHT

Fix positive integers n, t. Given $\lambda = (\lambda_1, ..., \lambda_n)$ (some λ_i possibly zero). Consider tableaux T of shape λ satisfying

$$\frac{T_{ij}}{n-i+j} \ge \frac{T_{ij+1}}{n-i+(j+1)}$$
$$\frac{T_{ij}}{n-i+j} \ge \frac{T_{i+1j}}{n-(i+1)+j}$$
$$\frac{T_{ij}}{n-i+j} < t.$$

イロン イロン イヨン イヨン 三日

5 / 50

Call Z_{λ}^{t} the number of such tableaux.

Bounded LHT

Fix positive integers n, t. Given $\lambda = (\lambda_1, ..., \lambda_n)$ (some λ_i possibly zero). Consider tableaux T of shape λ satisfying

$$\frac{T_{ij}}{n-i+j} \ge \frac{T_{ij+1}}{n-i+(j+1)}$$
$$\frac{T_{ij}}{n-i+j} \ge \frac{T_{i+1j}}{n-(i+1)+j}$$
$$\frac{T_{ij}}{n-i+j} < t.$$

Call Z_{λ}^{t} the number of such tableaux. Remark: $s_{\lambda}(t + y_{1}, ..., t + y_{n}) = \sum_{\mu \subset \lambda} Z_{\lambda/\mu}^{t} s_{\mu}(y_{1}, ..., y_{n})$. (See Corteel-Kim 2019.)

Bounded LHT

$$\lambda = (5, 4, 3, 2, 1), \ n = t = 5$$

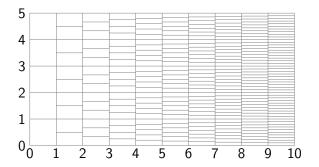
24	23	25	24	25		
16	18	17	18			
11	11	2				
6	2					
0						
T_{ij}						

<u>24</u> 5	<u>23</u> 6	<u>25</u> 7	<u>24</u> 8	<u>25</u> 9			
$\frac{16}{4}$	$\frac{18}{5}$	$\frac{17}{6}$	$\frac{18}{7}$				
$\frac{11}{3}$	$\frac{11}{4}$	$\frac{2}{5}$					
<u>6</u> 2	$\frac{2}{3}$						
$\frac{0}{1}$							
$\frac{T_{ij}}{n-i+j}$							

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > ○ Q () 6/50

LHT as Nonintersecting Paths

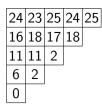
Consider the graph below (t = 5)



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

LHT as Nonintersecting Paths

(Here
$$n = 5, t = 5$$
)
Starting points: $v_i = (n - i, t - \frac{1}{n - i + 1})$.
Ending points: $u_j = (n + \lambda_j - j, 0)$.
Row *i* of $T \leftrightarrow$ path from v_i to u_i .



Proposition (Corteel, Kim, Savage 18)

Fix n, t, λ . The number of LHT with $\frac{T_{ij}}{n-i+i} < t$ is given by

$$Z_{\lambda}^{t} = t^{|\lambda|} s_{\lambda}(\underbrace{1,\ldots,1}_{n \text{ times}}) = t^{|\lambda|} \prod_{1 \leq i < j \leq n} \frac{\lambda_{i} - \lambda_{j} + j - i}{j - i}.$$

Proposition (Corteel, Kim, Savage 18)

Fix n, t, λ . The number of LHT with $\frac{T_{ij}}{n-i+j} < t$ is given by

$$Z_{\lambda}^{t} = t^{|\lambda|} s_{\lambda}(\underbrace{1, \ldots, 1}_{n \text{ times}}) = t^{|\lambda|} \prod_{1 \leq i < j \leq n} \frac{\lambda_{i} - \lambda_{j} + j - i}{j - i}.$$

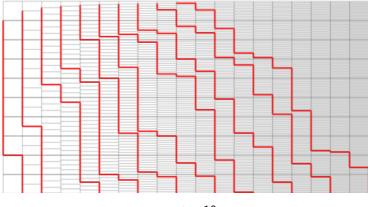
Proof.

Easy determinant evaluation.

$$\lambda = (n, n-1, \ldots, 1)$$

n = t = 5

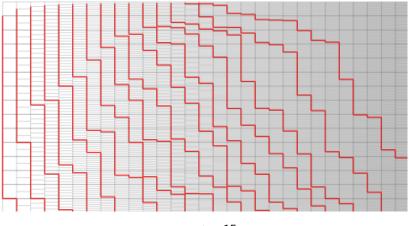
Tangent Method Examples Further Questions



n = t = 10

<□> <□> <□> <□> < ≧> < ≧> < ≧> < ≧ > < ≥ < ?<○ 11/50

Tangent Method Examples Further Questions

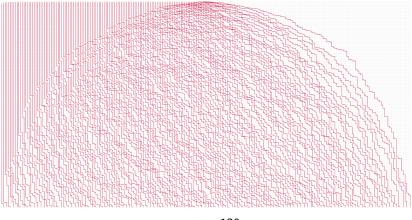


n = t = 15

Tangent Method Examples Further Questions



Tangent Method Examples Further Questions



n = t = 120

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ のへで 14/50

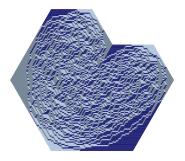
Some History

Tangent Method: A way to derive an arctic curve for systems that can be modeled as a collection of nonintersecting paths.

Some History

Tangent Method: A way to derive an arctic curve for systems that can be modeled as a collection of nonintersecting paths.

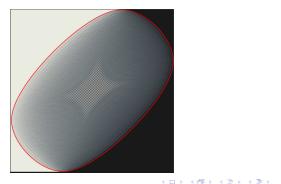
• 2005: Kenyon, Okounkov, "Limit shapes and the complex burgers equation."



Some History

Tangent Method: A way to derive an arctic curve for systems that can be modeled as a collection of nonintersecting paths.

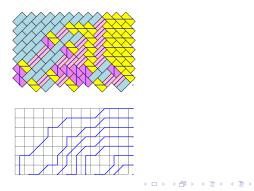
• 2016: Colomo, Sportiello, "Arctic curves of the six-vertex model on generic domains: the Tangent Method."



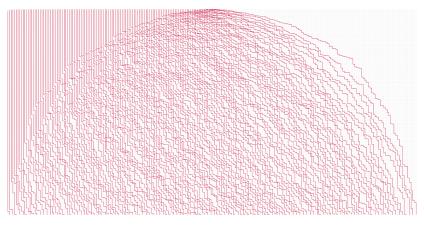
Some History

Tangent Method: A way to derive an arctic curve for systems that can be modeled as a collection of nonintersecting paths.

• 2016-now: Aggarwal, Debin, di Francesco, Granet, Guitter, Lapa, Ruelle, and others.



Tangent Method

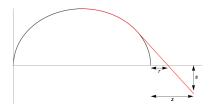


n = t = 120

Tangent Method

Idea:

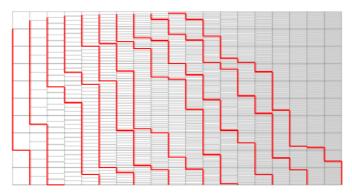
- In the thermodynamic limit, the outermost path follows the arctic curve.
- Extend outermost path by *z*, *s* as shown.



- Assumption: The path will follow the arctic curve until it can move in a straight line to its endpoint. The line is tangent to the arctic curve.
- Compute most probable r. The points $(n + \lambda_1 1 + r, 0)$ and $(n + \lambda_1 1 + z, -s)$ define the tangent line.
- Varying z gives a family of lines tangent to the arctic curve.

An Easy Example

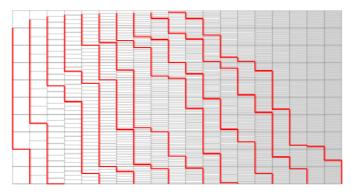
$$\lambda = (n, n-1, \ldots, 1)$$



n = 10, t = 10

 $\lambda = (n, n-1, ..., 1)$

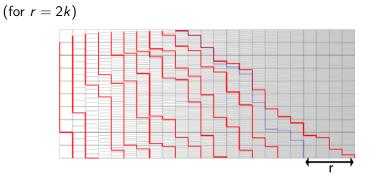
$$Z^t_\lambda = t^{|\lambda|} s_\lambda(1,\ldots,1) = (2t)^{\binom{n+1}{2}}$$



n = 10, t = 10

 $\lambda = \overline{(n, n-1, ..., 1)}$

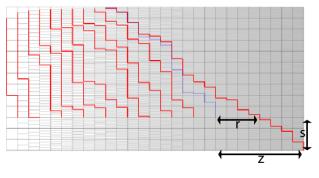
$$\frac{Z_{\lambda,r}^t}{Z_{\lambda}^t} = t^r \prod_{j=2}^n \frac{\lambda_1 + r - \lambda_j + j - 1}{\lambda_1 - \lambda_j + j - 1} = t^r \binom{n+k-1}{k}$$



22 / 50

 $\lambda = \overline{(n, n-1, ..., 1)}$

$$\frac{Z_{\lambda,z,s}^{t}}{Z_{\lambda}^{t}} = \sum_{r=0}^{z} \frac{Z_{\lambda,r}^{t}}{Z_{\lambda}^{t}} s^{z-r} \binom{2n+z-1}{z-r}$$



n = 10, t = 10, z = 8, s = 3

 $\lambda = \overline{(n, n-1, ..., 1)}$

We take the limit $r = n\rho$, $z = n\zeta$, $t = n\tau$, $s = n\sigma$, and $n \to \infty$.

$$\frac{Z_{\lambda,z,s}^t}{Z_{\lambda}^t} \approx \frac{1}{2\pi} e^{\zeta \ln \ln(n)} \int_0^{\zeta} \sqrt{\frac{1+\zeta}{\rho(\zeta-\rho)}} e^{nS(\rho)} d\rho$$
$$S(\rho) = \rho \ln(\tau) + (\zeta-\rho)\ln(\sigma) - \frac{1}{2}(2+\rho)\ln(2+\rho) - \frac{1}{2}\rho \ln(\rho) - (\zeta-\rho)\ln(\zeta-\rho)$$

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 Q () 24 / 50

$$S(\rho) = \rho \ln(\tau) + (\zeta - \rho) \ln(\sigma) - \frac{1}{2}(2 + \rho) \ln(2 + \rho) - \frac{1}{2}\rho \ln(\rho) - (\zeta - \rho) \ln(\zeta - \rho)$$

Has a unique maximum such that $S(\rho_{max}) = 0$.

$$rac{Z^t_{\lambda,z,s}}{Z^t_\lambda} \propto e^{n\,S(
ho_{max})}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

25 / 50

$$S(\rho) = \rho \ln(\tau) + (\zeta - \rho) \ln(\sigma) - \frac{1}{2}(2 + \rho) \ln(2 + \rho) - \frac{1}{2}\rho \ln(\rho) - (\zeta - \rho) \ln(\zeta - \rho)$$

Has a unique maximum such that $S(\rho_{max}) = 0$.

$$rac{Z^t_{\lambda,z,s}}{Z^t_\lambda} \propto e^{n\,S(
ho_{max})}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

25 / 50

Let's find ρ_{max} .

$$\lambda = (n, n-1, ..., 1)$$

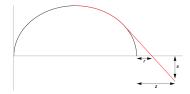
$$S'(
ho)=0\implies \zeta-
ho=rac{\sigma}{ au}(2+
ho)\sqrt{rac{
ho}{2+
ho}}$$

< □ > < □ > < 壹 > < ≧ > < ≧ > ≧ < ◇ Q (~ 26 / 50

 $\lambda = \overline{(n, n-1, ..., 1)}$

$$S'(
ho) = 0 \implies \zeta -
ho = rac{\sigma}{ au}(2+
ho)\sqrt{rac{
ho}{2+
ho}}$$

Pair of points: $(2 + \rho, 0)$ and $(2 + \zeta, -\sigma)$.

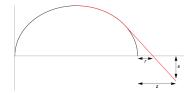


26 / 50

 $\lambda = (n, n-1, ..., 1)$

$$S'(
ho) = 0 \implies \zeta -
ho = rac{\sigma}{ au}(2+
ho)\sqrt{rac{
ho}{2+
ho}}$$

Pair of points: $(2 + \rho, 0)$ and $(2 + \zeta, -\sigma)$.



Family of tangent lines

$$Y = -\frac{\tau}{x}\sqrt{\frac{x}{x-2}}(X-x)$$

parametrized by $x = 2 + \rho$, $x \in [2, \infty)$.

26 / 50

メロト スポト メヨト メヨト 二日

 $\lambda = (n, n - 1, ..., 1)$

Family of tangent lines:

$$Y = -\frac{\tau}{x}\sqrt{\frac{x}{x-2}}(X-x)$$

parametrized by $x = 2 + \rho$, $x \in [2, \infty)$. Parametrization:

$$X(x) = \frac{x}{x-1}$$
$$Y(x) = \tau \frac{x}{x-1} \sqrt{\frac{x-2}{x}}$$

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ク へ (や 27 / 50

 $\lambda = (n, n-1, ..., 1)$

Family of tangent lines:

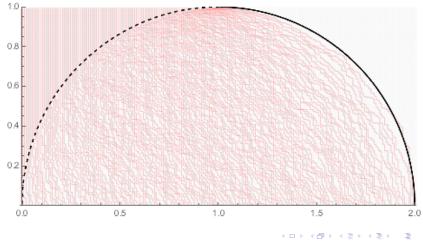
$$Y = -\frac{\tau}{x}\sqrt{\frac{x}{x-2}}(X-x)$$

parametrized by $x = 2 + \rho$, $x \in [2, \infty)$. Parametrization:

$$X(x) = \frac{x}{x-1}$$
$$Y(x) = \tau \frac{x}{x-1} \sqrt{\frac{x-2}{x}}$$

Curve: $Y = \tau \sqrt{2X - X^2}$

$$\lambda = (n, n-1, ..., 1)$$



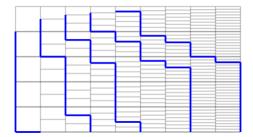
28 / 50

Other Portions of the Arctic Curve

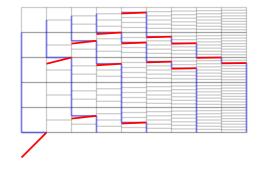
Dual paths: Read tableaux by column rather than by row.

Other Portions of the Arctic Curve

24	23	25	24	25
16	18	17	18	
11	11	2		
6	2			
0				

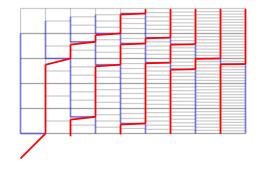


Other Portions of the Arctic Curve



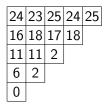
24	23	25	24	25
16	18	17	18	
11	11	2		
6	2			
0				

Other Portions of the Arctic Curve



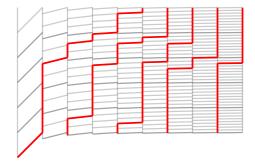
▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨ - のへで

32 / 50

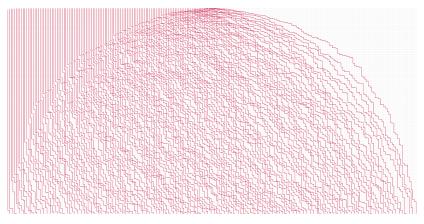


Other Portions of the Arctic Curve

24	23	25	24	25
16	18	17	18	
11	11	2		
6	2			
0				



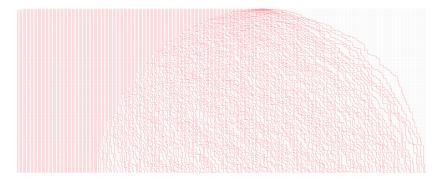
Other Portions of the Arctic Curve



n = t = 120

 $\lambda = \overline{(n, n-1, ..., 1)}$

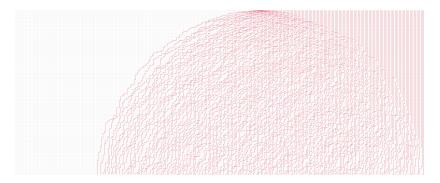
Extend
$$\lambda = (n, n - 1, \dots, 1, 0, \dots, 0).$$



・ロ ・ ・ 一部 ・ ・ 目 ・ ・ 目 ・ の へ (や 35 / 50

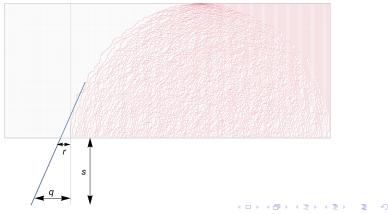
 $\lambda = \overline{(n, n-1, ..., 1)}$

Extend $\lambda = (n, n - 1, \dots, 1, 0, \dots, 0)$. Switch to dual paths.



 $\lambda = (n, n-1, ..., 1)$

Fix z, s. Shifting dual path by r corresponds to $\lambda = (\lambda_1, ..., \lambda_n, 1, ..., 1, 0, ..., 0).$



37 / 50

$$\lambda = (n, n-1, ..., 1)$$

Parametrization:

$$X(x) = \frac{x}{x-1}$$
$$Y(x) = \tau \frac{x}{x-1} \sqrt{\frac{x-2}{x}}$$

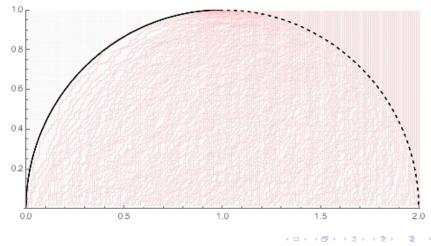
・ロン ・回 と ・ ヨン ・ ヨン

3

38 / 50

for $x \in (-\infty, 0]$. Same parametrization as before!

 $\lambda = (n, n - 1, ..., 1)$

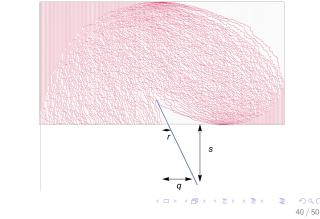


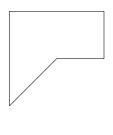
39 / 50

Cusps

Occurs when λ has a macroscopic jump. For example

$$\lambda = (2n, \ldots, 2n, n, n-1, \ldots, 1), t = n$$

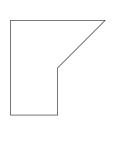


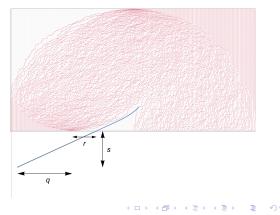


Cusps

Occurs when λ has a macroscopic flat section. For example

$$\lambda = (2n, 2n-1, \ldots, n+1, n, \ldots, n), t = n$$





In general

For $\lambda = (\lambda_1, \dots, \lambda_n)$ such that $n + \lambda_i - i = n\alpha(\frac{i}{n})$ for some piecewise differentiable α , we have

In general

For
$$\lambda = (\lambda_1, \dots, \lambda_n)$$
 such that $n + \lambda_i - i = n\alpha(\frac{i}{n})$ for some piecewise differentiable α , we have

Result

The arctic curve can be parametrized by

$$X(x) = \frac{x^2 l'(x)}{l(x) + x l'(x)}$$
$$Y(x) = \tau \frac{1}{l(x) + x l'(x)}$$

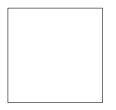
for an appropriate range of x, where $I(x) = e^{-\int_0^1 \frac{1}{x-\alpha(u)} du}$ and $\alpha(u)$ is the limiting profile.

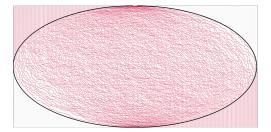
Some Examples

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ つ へ C
43 / 50

$$\lambda = (n, \ldots, n)$$

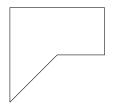
$$X(x) = \frac{x^2}{x^2 - 2x + 2}$$
$$Y(x) = \frac{\tau(x-1)^2}{x^2 - 2x + 2}$$

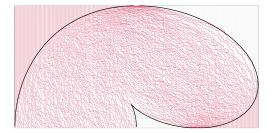




$$\lambda = (2n, \ldots, 2n, n, n-1, \ldots, 1)$$

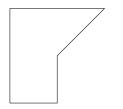
$$X(x) = \frac{x(2x^2 - 9x + 12)}{x^3 - 7x^2 + 17x - 12}$$
$$Y(x) = \frac{\tau(x - 3)^2 \sqrt{x(x - 2)}}{x^3 - 7x^2 + 17x - 12}$$

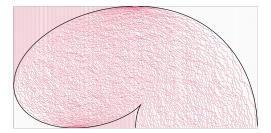




$$\lambda = (2n, \ldots, n+1, n, \ldots, n)$$

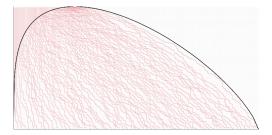
$$X(x) = \frac{x^2(2x-5)}{x^3 - 5x^2 + 9x - 8}$$
$$Y(x) = \frac{\tau(x-1)^2 \sqrt{(x-4)(x-2)}}{x^3 - 5x^2 + 9x - 8}$$



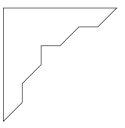


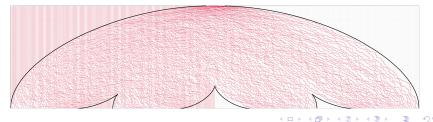
$\lambda = ((p-1)n, (p-1)(n-1), \dots, (p-1)2, p-1)$

$$X(x) = \frac{x}{x - p + 1}$$
$$Y(x) = \tau \frac{x - p}{x - p + 1} \left(\frac{x}{x - p}\right)^{\frac{1}{p}}$$



$\lambda = (6n, ..., 5n + 1, 4n, ..., 3n + 1, 2n, ..., 2n, 2n, ..., n + 1, n, ..., n, n, ..., 1)$





<ロ> <同> <同> < 回> < 回>

э

49 / 50

Further Questions

- Skew-tableaux
- q-weighted LHT
- Full limit shape

Thank You!