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Lecture Hall Tableaux

Fix positive integer n. Given λ = (λ1, ..., λn) (some λi possibly
zero). Consider tableaux T of shape λ satisfying

Ti j

n − i + j
≥

Ti j+1

n − i + (j + 1)

Ti j

n − i + j
>

Ti+1 j

n − (i + 1) + j

(See Corteel-Kim 2018.)
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Lecture Hall Tableaux

When λ has only one column, these become lecture hall
partitions.

When n→∞, the conditions become

Ti j ≥ Ti j+1

Ti j > Ti+1 j .

These are the same conditions as those for reverse
semistandard young Tableaux.
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Bounded LHT

Fix positive integers n, t. Given λ = (λ1, ..., λn) (some λi possibly
zero). Consider tableaux T of shape λ satisfying

Ti j

n − i + j
≥

Ti j+1

n − i + (j + 1)

Ti j

n − i + j
>

Ti+1 j

n − (i + 1) + j

Ti j

n − i + j
< t.

Call Z t
λ the number of such tableaux.

Remark: sλ(t + y1, . . . , t + yn) =
∑

µ⊂λ Z
t
λ/µsµ(y1, . . . , yn).

(See Corteel-Kim 2019.)
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Bounded LHT

λ = (5, 4, 3, 2, 1), n = t = 5
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LHT as Nonintersecting Paths

Consider the graph below (t = 5)

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5
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LHT as Nonintersecting Paths

(Here n = 5, t = 5)
Starting points: vi = (n − i , t − 1

n−i+1).
Ending points: uj = (n + λj − j , 0).
Row i of T ↔ path from vi to ui .

24 23 25 24 25

16 18 17 18

11 11 2

6 2

0
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Proposition (Corteel, Kim, Savage 18)

Fix n, t, λ. The number of LHT with
Ti j

n−i+j < t is given by

Z t
λ = t |λ|sλ(1, . . . , 1︸ ︷︷ ︸

n times

) = t |λ|
∏

1≤i<j≤n

λi − λj + j − i

j − i
.

Proof.

Easy determinant evaluation.
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λ = (n, n − 1, . . . , 1)

n = t = 5
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n = t = 10
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n = t = 15
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n = t = 30
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n = t = 120
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Some History

Tangent Method: A way to derive an arctic curve for systems that
can be modeled as a collection of nonintersecting paths.

2005: Kenyon, Okounkov, “Limit shapes and the complex
burgers equation.”
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Some History

Tangent Method: A way to derive an arctic curve for systems that
can be modeled as a collection of nonintersecting paths.

2016: Colomo, Sportiello, “Arctic curves of the six-vertex
model on generic domains: the Tangent Method.”
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Some History

Tangent Method: A way to derive an arctic curve for systems that
can be modeled as a collection of nonintersecting paths.

2016-now: Aggarwal, Debin, di Francesco, Granet, Guitter,
Lapa, Ruelle, and others.
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Tangent Method

n = t = 120
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Tangent Method

Idea:

In the thermodynamic
limit, the outermost path
follows the arctic curve.

Extend outermost path by
z , s as shown.

Assumption: The path will follow the arctic curve until it can
move in a straight line to its endpoint. The line is tangent to
the arctic curve.

Compute most probable r . The points (n + λ1 − 1 + r , 0) and
(n + λ1 − 1 + z ,−s) define the tangent line.

Varying z gives a family of lines tangent to the arctic curve.
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An Easy Example

λ = (n, n − 1, . . . , 1)

n = 10, t = 10
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λ = (n, n − 1, ..., 1)

Z t
λ = t |λ|sλ(1, . . . , 1) = (2t)(n+1

2 )

n = 10, t = 10
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λ = (n, n − 1, ..., 1)

Z t
λ,r

Z t
λ

= tr
n∏

j=2

λ1 + r − λj + j − 1

λ1 − λj + j − 1
= tr

(
n + k − 1

k

)
(for r = 2k)

n = 10, t = 10, r = 4
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λ = (n, n − 1, ..., 1)

Z t
λ,z,s

Z t
λ

=
z∑

r=0

Z t
λ,r

Z t
λ

sz−r
(

2n + z − 1

z − r

)

n = 10, t = 10, z = 8, s = 3
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λ = (n, n − 1, ..., 1)

We take the limit r = nρ, z = nζ, t = nτ , s = nσ, and n→∞.

Z t
λ,z,s

Z t
λ

≈ 1

2π
eζ n ln(n)

∫ ζ

0

√
1 + ζ

ρ(ζ − ρ)
en S(ρ)dρ

S(ρ) = ρ ln(τ)+(ζ−ρ)ln(σ)−1

2
(2+ρ)ln(2+ρ)−1

2
ρ ln(ρ)−(ζ−ρ)ln(ζ−ρ)
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S(ρ) = ρ ln(τ)+(ζ−ρ)ln(σ)−1

2
(2+ρ)ln(2+ρ)−1

2
ρ ln(ρ)−(ζ−ρ)ln(ζ−ρ)

Has a unique maximum such that S(ρmax) = 0.

Z t
λ,z,s

Z t
λ

∝ en S(ρmax )

Let’s find ρmax .
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λ = (n, n − 1, ..., 1)

S ′(ρ) = 0 =⇒ ζ − ρ =
σ

τ
(2 + ρ)

√
ρ

2 + ρ

Pair of points: (2 + ρ, 0) and (2 + ζ,−σ).

Family of tangent lines

Y = −τ
x

√
x

x − 2
(X − x)

parametrized by x = 2 + ρ, x ∈ [2,∞).
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λ = (n, n − 1, ..., 1)

Family of tangent lines:

Y = −τ
x

√
x

x − 2
(X − x)

parametrized by x = 2 + ρ, x ∈ [2,∞).
Parametrization:

X (x) =
x

x − 1

Y (x) = τ
x

x − 1

√
x − 2

x

Curve: Y = τ
√

2X − X 2
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λ = (n, n − 1, ..., 1)
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Other Portions of the Arctic Curve

Dual paths: Read tableaux by column rather than by row.
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Other Portions of the Arctic Curve
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0
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Other Portions of the Arctic Curve

n = t = 120
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λ = (n, n − 1, ..., 1)

Extend λ = (n, n − 1, . . . , 1, 0, . . . , 0).
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λ = (n, n − 1, ..., 1)

Extend λ = (n, n − 1, . . . , 1, 0, . . . , 0). Switch to dual paths.
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λ = (n, n − 1, ..., 1)

Fix z , s.
Shifting dual path by r corresponds to
λ = (λ1, ..., λn, 1, ..., 1, 0, ..., 0).
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λ = (n, n − 1, ..., 1)

Parametrization:

X (x) =
x

x − 1

Y (x) = τ
x

x − 1

√
x − 2

x

for x ∈ (−∞, 0].
Same parametrization as before!
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λ = (n, n − 1, ..., 1)
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Cusps

Occurs when λ has a macroscopic jump. For example

λ = (2n, . . . , 2n, n, n − 1, . . . , 1), t = n
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Cusps

Occurs when λ has a macroscopic flat section. For example

λ = (2n, 2n − 1, . . . , n + 1, n, . . . , n), t = n
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In general

For λ = (λ1, . . . λn) such that n + λi − i = nα( i
n ) for some

piecewise differentiable α, we have

Result

The arctic curve can be parametrized by

X (x) =
x2I ′(x)

I (x) + xI ′(x)

Y (x) = τ
1

I (x) + xI ′(x)

for an appropriate range of x, where I (x) = e
−

∫ 1
0

1
x−α(u)

du
and α(u)

is the limiting profile.
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Some Examples
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λ = (n, . . . , n)

Parametrization:

X (x) =
x2

x2 − 2x + 2

Y (x) =
τ(x − 1)2

x2 − 2x + 2
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λ = (2n, . . . , 2n, n, n − 1, . . . , 1)

Parametrization:

X (x) =
x(2x2 − 9x + 12)

x3 − 7x2 + 17x − 12

Y (x) =
τ(x − 3)2

√
x(x − 2)

x3 − 7x2 + 17x − 12
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λ = (2n, . . . , n + 1, n, . . . , n)

Parametrization:

X (x) =
x2(2x − 5)

x3 − 5x2 + 9x − 8

Y (x) =
τ(x − 1)2

√
(x − 4)(x − 2)

x3 − 5x2 + 9x − 8
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λ = ((p − 1)n, (p − 1)(n − 1), . . . , (p − 1)2, p − 1)

Parametrization:

X (x) =
x

x − p + 1

Y (x) = τ
x − p

x − p + 1

(
x

x − p

) 1
p
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λ = (6n, . . . , 5n + 1, 4n, . . . , 3n + 1, 2n, . . . , 2n, 2n, . . . , n + 1, n, . . . , n, n, . . . , 1)
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Further Questions

Skew-tableaux

q-weighted LHT

Full limit shape
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End!

Thank You!
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